满分5 > 初中数学试题 >

如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF...

如图(1),已知点G在正方形ABCD的对角线AC上,GEBC,垂足为点E,GFCD,垂足为点F.

(1)证明与推断:

①求证:四边形CEGF是正方形;

②推断:的值为     

(2)探究与证明:

将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AGBE之间的数量关系,并说明理由:

(3)拓展与运用:

正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CGAD于点H.若AG=6,GH=2,则BC=     

 

(1)①四边形CEGF是正方形;②;(2)线段AG与BE之间的数量关系为AG=BE;(3)3 【解析】(1)①由、结合可得四边形CEGF是矩形,再由即可得证; ②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得; (2)连接CG,只需证∽即可得; (3)证∽得,设,知,由得、、,由可得a的值. (1)①∵四边形ABCD是正方形, ∴∠BCD=90°,∠BCA=45°, ∵GE⊥BC、GF⊥CD, ∴∠CEG=∠CFG=∠ECF=90°, ∴四边形CEGF是矩形,∠CGE=∠ECG=45°, ∴EG=EC, ∴四边形CEGF是正方形; ②由①知四边形CEGF是正方形, ∴∠CEG=∠B=90°,∠ECG=45°, ∴,GE∥AB, ∴, 故答案为:; (2)连接CG, 由旋转性质知∠BCE=∠ACG=α, 在Rt△CEG和Rt△CBA中, =cos45°=、=cos45°=, ∴=, ∴△ACG∽△BCE, ∴, ∴线段AG与BE之间的数量关系为AG=BE; (3)∵∠CEF=45°,点B、E、F三点共线, ∴∠BEC=135°, ∵△ACG∽△BCE, ∴∠AGC=∠BEC=135°, ∴∠AGH=∠CAH=45°, ∵∠CHA=∠AHG, ∴△AHG∽△CHA, ∴, 设BC=CD=AD=a,则AC=a, 则由得, ∴AH=a, 则DH=AD﹣AH=a,CH==a, ∴由得, 解得:a=3,即BC=3, 故答案为:3.
复制答案
考点分析:
相关试题推荐

襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y/千克,y关于x的函数解析式为 且第12天的售价为32/千克,第26天的售价为25/千克.已知种植销售蓝莓的成木是18/千克,每天的利润是W元(利润=销售收入﹣成本).

(1)m=     ,n=     

(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?

(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?

 

查看答案

如图,AB是⊙O的直径,AMBN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.

(1)求证:DA=DE;

(2)若AB=6,CD=4,求图中阴影部分的面积.

 

查看答案

如图,已知双曲线y1=与直线y2=ax+b交于点A(﹣4,1)和点B(m,﹣4).

(1)求双曲线和直线的解析式;

(2)直接写出线段AB的长和y1>y2x的取值范围.

 

查看答案

正在建设的汉十高铁竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,且高铁行驶的速度是当前动车行驶速度的2.5倍,则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.

 

查看答案

品中华诗词,寻文化基因.某校举办了第二届中华诗词大赛,将该校八年级参加竞赛的学生成绩统计后,绘制了如下不完整的频数分布统计表与频数分布直方图.

频数分布统计表

组别

成绩x(分)

人数

百分比

A

60≤x<70

8

20%

B

70≤x<80

16

m%

C

80≤x<90

a

30%

D

90≤<x≤100

4

10%

 

请观察图表,解答下列问题:

(1)表中a=     ,m=     

(2)补全频数分布直方图;

(3)D组的4名学生中,有1名男生和3名女生.现从中随机抽取2名学生参加市级竞赛,则抽取的2名学生恰好是一名男生和一名女生的概率为     

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.