如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于
A.44° B.60° C.67° D.77°
如图,∠1=∠2,∠3=∠4,则下面结论中错误的是( )
A. △ADC≌△BCD B. △ABD≌△BAC C. △AOB≌△COD D. △AOD≌△BOC
两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,小明在探究筝形的性质时,得到如下结论:
①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有( )
A.①② B.①③ C.②③ D.①②③
如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( )
A. PC=PD B. ∠CPD=∠DOP C. ∠CPO=∠DPO D. OC=OD
如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线。此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE。则说明这两个三角形全等的依据是[来( )
A. SAS B. ASA C. AAS D. SSS
如图,△ABC≌△BAD,如果AB=6cm,BD=5cm,AD=4cm,那么BC=( )
A. 4cm B. 5cm C. 6cm D. 无法确定