阅读下面的情景对话,然后解答问题:
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小明:那直角三角形是否存在奇异三角形呢?
小红:等边三角形一定是奇异三角形.
(1)根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,则小红提出的命题是 .(填“真命题”或“假命题”)
(2)若是奇异三角形,其中两边的长分别为、,则第三边的长为 .
(3)如图,中,,以为斜边作等腰直角三角形,点是上方的一点,且满足.求证:是奇异三角形.
“保护环境,人人有责”,为了更好的利用水资源,某污水处理厂决定购买、两型号污水处理设备共10台,其信息如下表.(1)设购买型设备台,所需资金共为万元,每月处理污水总量为吨,试写出与之间的函数关系式,与之间的函数关系式;(2)经预算,该污水处理厂购买设备的资金不超过88万元, 每月处理污水总量不低于2080吨,请你列举出所有购买方案,并指出哪种方案最省钱,需多少资金?
如图,直线与直线 ,两直线与轴的交点分别为、.
(1)求两直线交点的坐标;
(2)求的面积.
先化简在求值: ,其中
为了解某校八年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.
(1)本次抽测的男生有 人,抽测成绩的众数是 ;
(2)请你将图2的统计图补充完整;
(3)若规定引体向上5次以上(含5次)为体能达标,则该校400名八年级男生中估计有多少人体能达标?
如图,点E,F是平行四边形ABCD对角线BD上的点,且BF=DE.求证:AE=CF.