如图,▱ABCD周长是,△的周长是,则的长是( )
A. B. C. D.
一次函数的图象经过原点,则的值为( )
A. B. C. D.
计算的结果是( )
A. B.
C.
D.
下列各式一定是二次根式的是( )
A. B.
C.
D.
嘉嘉参加机器人设计活动,需操控机器人在5×5的方格棋盘上从A点行走至B点,且每个小方格皆为正方形,主办单位规定了三条行走路径R1,R2,R3,其行经位置如图与表所示:
路径 | 编号 | 图例 | 行径位置 |
第一条路径 | R1 | _ | A→C→D→B |
第二条路径 | R2 | … | A→E→D→F→B |
第三条路径 | R3 | ▂ | A→G→B |
已知A、B、C、D、E、F、G七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断R1、R2、R3这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.
一个箱子内有4颗相同的球,将4颗球分别标示号码1、2、3、4,今翔翔以每次从箱子内取一颗球且取后放回的方式抽取,并预计取球10次,现已取了8次,取出的结果如表所列:
次数 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | 第7次 | 第8次 | 第9次 | 第10次 |
号码 | 1 | 3 | 4 | 4 | 2 | 1 | 4 | 1 |
|
|
若每次取球时,任一颗球被取到的机会皆相等,且取出的号码即为得分,请回答下列问题:
(1)请求出第1次至第8次得分的平均数.
(2)承(1),翔翔打算依计划继续从箱子取球2次,请判断是否可能发生「这10次得分的平均数不小于2.2,且不大于2.4」的情形?若有可能,请计算出发生此情形的机率,并完整写出你的解题过程;若不可能,请完整说明你的理由.