满分5 > 初中数学试题 >

已知关于的方程x2-(2k+1)x+4k-2=0 (1)求证:不论k取何值,这个...

已知关于的方程x2-(2k+1)x+4k-2=0

(1)求证:不论k取何值,这个方程总有实数根

(2)若等腰ABC一边长a=4,另两边长b,c恰好是这个方程的两根,求ABC的周长.

 

(1)证明见解析;(2)10. 【解析】(1)根据方程各项的系数利用根的判别式即可得出∆=(2k-3)2≥0,此题得证;  (2)当a为底时,则b、c为腰,根据两根相等得出k的值;当a为腰时,则b、c中有一个的值也等于4,将其代入方程求出k的值;再根据根与系数的关系求出a+b的值,进而可求出三角形的周长. (1)证明:∵在方程x2-(2k+1)x+4k-2=0中, △=[-(2k+1)]2-4(4k-2)=4k2-12k+9=(2k-3)2≥0, ∴不论k取什么实数值,这个方程总有实数根; (2)【解析】 当a为底边时,b=c, ∴△=(2k-3)2=0,解得:k=, ∴b+c=2k+1=4=a, ∴此种情况不合适; 当a为腰时,将x=4代入原方程得:16-4(2k+1)+4k-2=0, 解得:k=. ∴b+c=2k+1=6, ∴△ABC的周长=a+b+c=4+6=10.
复制答案
考点分析:
相关试题推荐

如图,在菱形ABCD中,对角线ACBD相交于O点,AB=5,AC=6,过D点作DE//ACBC的延长线于E

(1)求BDE的周长

(2)点P为线段BC上的点,连接PO并延长交AD于点Q,求证:BP=DQ

 

查看答案

《九章算术》勾股章的问题::今有二人同所立,甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会.问甲、乙各行几何?大意是说:如图,甲乙二人从A处同时出发,甲的速度与乙的速度之比为7:3,乙一直向东走,甲先向南走十步到达C处,后沿北偏东某方向走了一段距离后与乙在B处相遇,这时,甲乙各走了多远?

 

查看答案

射击队为从甲、乙两名运动员选拔一人参加运动会,对他们进行了六次测试,测试成绩如下表(单位:环)

 

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

 

(1)由表格中的数据,计算出甲的平均成绩是      环,乙的成绩是      .

(2)结合平均水平与发挥稳定性你认为推荐谁参加比赛更适合,请说明理由.

 

查看答案

如图,平行四边形AEFG的顶点G在平行四边形ABCD的边CD上,平行四边形ABCD的顶点B在平行四边形AEFG的边EF.求证:□ABCD=□AEFG

 

查看答案

已知a,b是直角三角形的两边,且满足,求此三角形第三边长.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.