方程组:的解是( )
A. B.
C.
D.
若5x3m-2n-2yn-m+11=0是二元一次方程,则( )
A. m=1,n=2 B. m=2,n=1 C. m=-1,n=2 D. m=3,n=4
如图1,已知直线y=3x分别与双曲线y=、y=
(x>0)交于P、Q两点,且OP=2OQ.
(1)求k的值.
(2)如图2,若点A是双曲线y= 上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=
(x>0)于点B、C,连接BC.请你探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;
(3)如图3,若点D是直线y=3x上的一点,请你进一步探索在点A运动过程中,以点A、B、C、D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.
“半角型”问题探究:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小明同学的方法是将△ABE绕点A逆时针旋转120°到△ADG的位置,然后再证明△AFE≌△AFG,从而得出结论:EF=BE+DF
(1)如图2,在四边形ABCD中,AB=AD,∠B +∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
(2)实际应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离?
拓展提高
(3)如图4,边长为5的正方形ABCD中,点E、F分别在AB、CD上,AE=CF=1,O为EF的中点,动点G、H分别在边AD、BC上,EF与GH的交点P在O、F之间(与0、F不重合),且∠GPE=45°,设AG=m,求m的取值范围。
在平面直角坐标系中,对于任意一点P(x,y),我们做以下规定:d(P)=|x|+|y|,称d(P)为点P的坐标距离.
(1)已知:点P(3,﹣4),求点P的坐标距离d(P)的值.
(2)如图,四边形OABC为正方形,且点A、B在第一象限,点C在第四象限.
①求证:d(A)=d(C).
②若OC=2,且满足d(A)+d(C)=d(B)+2,求点B坐标.
某租赁公司拥有汽车 100 辆.据统计,每辆车的月租金为 4000 元时,可全部租出.每辆车的月租金每增加 100 元,未租出的车将增加 1 辆.租出的车每辆每月的维护费为 500 元,未租出的车每辆每月只需维护费 100 元.
(1)当每辆车的月租金为 4600 元时,能租出多少辆?并计算此时租赁公司的月收益(租金收入扣 除维护费)是多少万元?
(2)规定每辆车月租金不能超过 7200 元,当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到 40.4 万元?