满分5 > 初中数学试题 >

(满分10分)有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除...

(满分10分)有一个不透明口袋,装有分别标有数字12344个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字123的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.

1)请你求出摸出的这两个数的积为6的概率;

2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.

 

(本题10分)【解析】 (1)当小敏摸到标有数字1的小球时,小颖摸到的卡片可能标有1或2或3,积为1或2或3;当小敏摸到标有数字2的小球时,小颖摸到的卡片可能标有1或2或3,积为2或4或6;当小敏摸到标有数字3的小球时,小颖摸到的卡片可能标有1或2或3,积为3或6或9;当小敏摸到标有数字4的小球时,小颖摸到的卡片可能标有1或2或3,积为4或8或12。总结果有12种,其中积为6的有2种,∴摸出的这两个数的积为6的概率是. ………………………………5分 (2)游戏不公平,因为积为偶数的有8种情况,而积为奇数的有4种情况.…………7分 游戏规则可改为:若积为3的倍数,小敏赢,否则,小颖赢. ………10分 注:修改游戏规则,应不改变已知数字和小球、卡片数量.其他规则,凡正确均给分。 【解析】 【解析】 (1)列表如下: 小敏   1   2   3   4   1   1   2   3   4   2   2   4   6   8   3   3   6   9   12   ………………………………………………………(2分) 总结果有12种,其中积为6的有2种, ∴P(积为6)=. ………………………………………(4分) (2)游戏不公平,因为积为偶数的有8种情况,而积为奇数的有4种情况.(6分) 游戏规则可改为:若积为3的倍数,小敏赢,否则,小颖赢. ………(8分) 注:修改游戏规则,应不改变已知数字和小球、卡片数量.其他规则,凡正确均给分.  
复制答案
考点分析:
相关试题推荐

在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).

(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;

(2)分别求出李燕和刘凯获胜的概率.

 

查看答案

在一个不透明的袋子中有一个黑球和两个白球(除颜色外其他均相同).用树状图(或列表法)解答下列问题:

(1)小丽第一次从袋子中摸出一个球不放回,第二次又从袋子中摸出一个球,则小丽两次都摸到白球的概率是多少?

(2)小强第一次从袋子中摸出一个球,摸到黑球不放回,摸到白球放回;第二次又从袋子中摸出一个球,则小强两次都摸到白球的概率是多少?

 

查看答案

在四张背面完全相同的纸牌ABCD,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.

1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用ABCD表示);

2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.

 

查看答案

在一个不透明的口袋里装有只有颜色不同的黑、白两种球共20个,某学习小组做摸球实验,每次摸出一个球再把它放回袋中,不断重复,下表是一次摸球实验的一组统计数据.

摸球的次数n

100

150

200

500

800

1 000

摸到白球的次数m

58

96

116

295

484

601

摸到白球的频率

0.58

0.64

0.58

0.59

0.605

0.601

 

(1)请估计:当n很大时,摸到白球的频率将会接近多少?

(2)试估算口袋里黑、白两种颜色的球各有多少个?

 

查看答案

甲口袋中装有3个相同的小球,它们分别写有数值﹣115;乙口袋中装有3个相同的小球,它们分别写有数值﹣423.现从甲口袋中随机取一球,记它上面的数值为x,再从乙口袋中随机取一球,记它上面的数值为y.设点A的坐标为(xy),请用树形图或列表法,求点A落在第一象限的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.