(题文)(1)阅读理【解析】
如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是_________;
(2)问题解决:
如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证BE+CF>EF.
已知:如图E在△ABC的边AC上,且∠AEB=∠ABC.
⑴求证:∠ABE=∠C;
⑵若∠BAE的平分线AF交BE于F,FD∥BC交AC于D,设AB=5,AC=8,求DC的长.
如图,在△ABC中,为边上的一点,,求
的度数.
如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.
求证:△ABE≌△ACE
如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,(1)求∠CDF度数;(2)若CD=12,DE=5,CE=13,求DF的长.
育才中学现有学生3550人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查.根据采集到的数据绘制的统计图(不完整)如下:
请你根据图中提供的信息,完成下列问题:
(1)试确定如图甲中“音乐”部分所对应的圆心角的大小.
(2)在如图乙中,将“体育”部分的图形补充完整.
(3)爱好“书画”的人数占被调查人数的百分数是多少?
(4)估计育才中学现有的学生中,有多少人爱好“书画”?