如图,在平面直角坐标系中,已知抛物线
与轴交于O点、A点,B为抛物线上一点,C为y轴上一点,连接BC,且BC//OA,已知点O(0,0),A(6,0),B(3,m),AB=![]()
.
(1)求B点坐标及抛物线的解析式.,
(2)M是CB上一点,过点M作y轴的平行线交抛物线于点E,求DE的最大值;
(3)坐标平面内是否存在一点F,使得以C、B、D、F为顶点的四边形是菱形?若存在,求出符合条件的点F坐标;若不存在,请说明理由.

如图,在△ABC中,点D为BC边的中点,以D为顶点的∠EDF的两边分别与AB、AC交于点E、F,且∠EDF与∠A互补.
(1)如图①,若AB=AC,且∠A=90°,证明:DE=DF;
(2)如图②,若AB=AC,那么(1)中的结论是否成立?请说明理由.
(3)如图③,若,探索线段DE与DF的数量关系,并证明你的结论.![]()

阅读材料,解答相应的问题:
如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,否则,称这个正整数为“非慧数”。
例如:
…
因此:3,5,8,……都是“智慧数”;而1,2,4……都是“非智慧数”。
对于“智慧数”,有如下结论:
①设为正整数(![]()
),则![]()
,∴除1以外,所有的奇数都是“智慧数”;
②设为正整数(![]()
),则![]()
= ,∴
都是“智慧数”;
(1)补全材料中空缺的部分;
(2)求出所有大于5而小于20的“非智慧数”;
如图,我市某中学在创建“特色校园”的活动中,将学校的办学理念做成了宣传牌(CD),放置在教学楼的顶部(如图所示),该中学数学活动小组的同学在山坡坡脚A处测得宣传牌底D的仰角为60°,沿坡AB向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度为
,AB=10米,AE=15米.
(1)求点B距水平面AE的高度BH;
(2)求宣传牌CD的高度.(结果精确到0.1米.参考数据:
,
)

如图,在□ABCD中,E、F分别是BC、AD上的一点,BE=DF.
(1)求证:AE=CF.
(2)若,求∠B的度数.![]()

计算:
(1)先化简,再求值:
,其中
;
(2)计算:
.
