满分5 > 初中数学试题 >

已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,...

已知直线mn,点C是直线m上一点,点D是直线n上一点,CD与直线mn不垂直,点P为线段CD的中点.

(1)操作发现:直线lmln,垂足分别为AB,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PAPB的数量关系:      

(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PAPB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.

(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线mn之间的距离为2k.求证:PAPB=kAB

 

PA=PB;成立;PA=PB. 【解析】试题分析:(1)根据三角形CBD是直角三角形,而且点P为线段CD的中点,应用直角三角形的性质,可得PA=PB,据此解答即可.(2)首先过C作CE⊥n于点E,连接PE,然后分别判断出PC=PE、∠PCA=∠PEB、AC=BE;然后根据全等三角形判定的方法,判断出△PAC∽△PBE,即可判断出PA=PB仍然成立.(3)首先延长AP交直线n于点F,作AE⊥BD于点E,然后根据相似三角形判定的方法,判断出△AEF∽△BPF,即可判断出AF•BP=AE•BF,再个AF=2PA,AE=2k,BF=AB,可得2PA•PB=2k.AB,所以PA•PB=k•AB,据此解答即可 试题解析:(1)∵l⊥n, ∴BC⊥BD, ∴三角形CBD是直角三角形, 又∵点P为线段CD的中点, ∴PA=PB. 把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下: 如图②,过C作CE⊥n于点E,连接PE, , ∵三角形CED是直角三角形,点P为线段CD的中点, ∴PD=PE, 又∵点P为线段CD的中点, ∴PC=PD, ∴PC=PE; ∵PD=PE, ∴∠CDE=∠PEB, ∵直线m∥n, ∴∠CDE=∠PCA, ∴∠PCA=∠PEB, 又∵直线l⊥m,l⊥n,CE⊥m,CE⊥n, ∴l∥CE, ∴AC=BE, 在△PAC和△PBE中,∴△PAC∽△PBE, ∴PA=PB. (3)如图③,延长AP交直线n于点F,作AE⊥BD于点E, , ∵直线m∥n, ∴, ∴AP=PF, ∵∠APB=90°, ∴BP⊥AF, 又∵AP=PF, ∴BF=AB; 在△AEF和△BPF中,∴△AEF∽△BPF, ∴, ∴AF•BP=AE•BF, ∵AF=2PA,AE=2k,BF=AB, ∴2PA•PB=2k.AB, ∴PA•PB=k•AB. ∴PA=PB
复制答案
考点分析:
相关试题推荐

【阅读理解】对于任意正实数ab,因为≥0,所以 ≥0,所以≥2,只有当时,等号成立.

【获得结论】在≥2ab均为正实数)中,若为定值,则≥2,只有当时, 有最小值2

根据上述内容,回答下列问题:若>0,只有当=      时, 有最小值      

【探索应用】如图,已知A(-30),B0,-4),P为双曲线0上的任意一点,过点PPCx轴于点CPDy轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.

 

查看答案

如图,AB是半圆的直径,过圆心OAB的垂线,与弦AC的延长线交于点D,点EOD

(1)求证:CE是半圆的切线;

(2)若CD=10,求半圆的半径.

 

查看答案

近几年永州市加大中职教育投入力度,取得了良好的社会效果。某校随机调查了九年级a名学生升学意向,并根据调查结果绘制如图的两幅不完整的统计图

请你根据图中信息解答下列问题:

(1)a=             

(2)扇形统计图中,职高对应的扇形的圆心角α=              

(3)请补全条形统计图;

(4)若该校九年级有学生900名,估计该校共有多少名毕业生的升学意向是职高

 

查看答案

我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:

“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?

 

查看答案

如图,四边形ABCD是平行四边形,E是BC边上一点,只用一把无刻度的直尺在AD边上作点F,使得DF=BE.

(1)作出满足题意的点F,简要说明你的作图过程;

(2)依据你的作图,证明:DF=BE.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.