满分5 > 初中数学试题 >

如图,二次函数y=﹣x2+mx+n的图象经过点A(2,3),与x轴的正半轴交于点...

如图,二次函数y=﹣x2+mx+n的图象经过点A(2,3),与x轴的正半轴交于点G(1+,0);一次函数y=kx+b的图象经过点A,且交x轴于点P,交抛物线于另一点B,又知点A,B位于点P的同侧.

(1)求这个二次函数的解析式;

(2)若PA=3PB,求一次函数的解析式;

(3)在(2)的条件下,当k0时,抛物线的对称轴上是否存在点C,使⊙C同时与x轴和直线AP都相切?如果存在,请求出点C的坐标;如果不存在,请说明理由.

   

 

(1);(2) 或; (3)存在这样的点或(1,﹣5﹣10),使得同时与轴和直线都相切. 【解析】分析:(1)根据抛物线的对称轴为x=1可求出m的值,再将点A的坐标代入抛物线的解析式中求出n值,此题得解; (2)根据P、A、B三点共线以及PA=3PB结合点A的坐标即可得出点B的纵坐标,将其代入抛物线解析式中即可求出点B的坐标,再根据点A、B的坐标利用待定系数法即可求出直线AP的解析式; (3)假设存在,设出点C的坐标,依照题意画出图形,根据角的计算找出∠DCF=∠EPF,再通过解直角三角形找出关于r的一元一次方程,解方程求出r值,将其代入点C的坐标中即可得出结论. 详解:(1)∵抛物线的对称轴为x=1,∴﹣=1,解得:m=. 将点A(2,3)代入y=﹣x2+x+n中,3=﹣1+1+n,解得:n=3,∴抛物线的解析式为y=﹣x2+x+3. (2)∵P、A、B三点共线,PA=3PB,且点A、B位于点P的同侧,∴yA﹣yP=3(yB﹣yP). 又∵点P为x轴上的点,点A(2,3),∴yB=1. 当y=1时,有﹣x2+x+3=1,解得:x1=﹣2,x2=4,∴点B的坐标为(﹣2,1)或(4,1). 将点A(2,3)、B(﹣2,1)代入y=kx+b中得,解得:,∴一次函数的解析式y=x+2; 将点A(2,3)、B(4,1)代入y=kx+b中,解得:,∴一次函数的解析式y=﹣x+5. 综上所述:当PA:PB=3:1时,一次函数的解析式为y=x+2或y=﹣x+5. (3)假设存在,设点C的坐标为(1,r). ∵k>0,∴直线AP的解析式为y=x+2. 当y=0时,x+2=0,解得:x=﹣4,∴点P的坐标为(﹣4,0),当x=1时,y=,∴点D的坐标为(1,). 令⊙与直线AP的切点为F,与x轴的切点为E,抛物线的对称轴与直线AP的交点为D,连接CF,如图所示. ∵∠PFC=∠PEC=90°,∠EPF+∠ECF=∠DCF+∠ECF=180°,∴∠DCF=∠EPF. 在Rt△CDF中,tan∠DCF=tan∠EPF=,CD=﹣r,∴CD=CF=|r|=﹣r,解得:r=5﹣10或r=﹣5﹣10. 故当k>0时,抛物线的对称轴上存在点C,使得⊙C同时与x轴和直线AP都相切,点C的坐标为(1,5﹣10)或(1,﹣5﹣10).
复制答案
考点分析:
相关试题推荐

矩形ABCD中,DE平分∠ADCBC边于点E,PDE上的一点(PEPD),PMPD,PMAD边于点M.

(1)若点F是边CD上一点,满足PFPN,且点N位于AD边上,如图1所示.

求证:①PN=PF;DF+DN=DP;

(2)如图2所示,当点FCD边的延长线上时,仍然满足PFPN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.

 

查看答案

已知关于x的一元二次方程x2﹣x+a﹣1=0.

(1)当a=﹣11时,解这个方程;

(2)若这个方程有两个实数根x1,x2,求a的取值范围;

(3)若方程两个实数根x1,x2满足[2+x1(1﹣x1][2+x2(1﹣x2]=9,求a的值.

 

查看答案

为缓解城市汽车交通拥堵,减少汽车尾气对大气的污染. 某区政府投放了大量公租自行车供市民使用. 到2016年底,全区已有公租自行车2 500辆,摆放点60个. 预计到2018年底,全区将有公租自行车5 000辆,并且平均每个摆放点的公租自行车数量是2016年底平均每个摆放点的公租自行车数量的1.2倍. 预计到2018年底,全区将有摆放点多少个?

 

查看答案

某校组织了一批学生随机对部分市民就是否吸烟以及吸烟和非吸烟人群对他人在公共场所吸烟的态度(分三类:A表示主动制止;B表示反感但不制止,C表示无所谓)进行了问卷调查,根据调查结果分别绘制了如下两个统计图. 请根据图中提供的信息解答下列问题:

(1)图1中,“吸烟”类人数所占扇形的圆心角的度数是多少?

(2)这次被调查的市民有多少人?

(3)补全条形统计图;

(4)若该市共有市民480万人,求该市大约有多少人吸烟?

 

查看答案

满足,请选择一个适当的数,使得代数式的值为一个奇数.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.