满分5 > 初中数学试题 >

如图,抛物线(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为...

如图,抛物线a≠0)的图象与x轴交于AB两点,与y轴交于C点,已知B点坐标为(40).

1)求抛物线的解析式;

2)试探究ABC的外接圆的圆心位置,并求出圆心坐标;

3)若点M是线段BC下方的抛物线上一点,求MBC的面积的最大值,并求出此时M点的坐标.

 

(1);(2)(,0);(3)4,M(2,﹣3). 【解析】试题分析:方法一: (1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可. (2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标. (3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M. 方法二: (1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可. (2)通过求出A,B,C三点坐标,利用勾股定理或利用斜率垂直公式可求出AC⊥BC,从而求出圆心坐标. (3)利用三角形面积公式,过M点作x轴垂线,水平底与铅垂高乘积的一半,得出△MBC的面积函数,从而求出M点. 试题解析:【解析】 方法一: (1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=,∴抛物线的解析式为: . (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程: x+b=,即: ,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得: 即 M(2,﹣3). 过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4. 方法二: (1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=,∴抛物线的解析式为: . (2)∵y=(x﹣4)(x+1),∴A(﹣1,0),B(4,0).C(0,﹣2),∴KAC= =﹣2,KBC= =,∴KAC×KBC=﹣1,∴AC⊥BC,∴△ABC是以AB为斜边的直角三角形,△ABC的外接圆的圆心是AB的中点,△ABC的外接圆的圆心坐标为(,0). (3)过点M作x轴的垂线交BC′于H,∵B(4,0),C(0,﹣2),∴lBC:y=x﹣2,设H(t, t﹣2),M(t, ),∴S△MBC=×(HY﹣MY)(BX﹣CX)=×(t﹣2﹣)(4﹣0)=﹣t2+4t,∴当t=2时,S有最大值4,∴M(2,﹣3).
复制答案
考点分析:
相关试题推荐

如图,ABCADE是有公共顶点的等腰直角三角形,∠BAC=DAE=90°,点P为射线BDCE的交点.

(1)求证:BD=CE

(2)若AB=2,AD=1,把ADE绕点A旋转,当∠EAC=90°时,求PB的长;

 

查看答案

某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.

1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?

2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

 

查看答案

如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P101),P211),P310),P41﹣1),P52﹣1),P620),,则点P2017的坐标是______

 

查看答案

如图,抛物线的顶点为P﹣22),与y轴交于点A03).若平移该抛物线使其顶点P沿直线移动到点P2﹣2),点A的对应点为A,则抛物线上PA段扫过的区域(阴影部分)的面积为______

 

查看答案

2016黑龙江省齐齐哈尔市)如图,已知点P63),过点PPMx轴于点MPNy轴于点N,反比例函数的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=______

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.