若一个三角形的两边长分别为5和8,则第三边长可能是( )
A. 15 B. 10 C. 3 D. 2
下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C.
D.
如果“盈利5%”记作+5%,那么—3%表示( )
A. 亏损3% B. 亏损2% C. 盈利3% D. 盈利2%
在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.
(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为 度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为 ;
(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;
(3)PA、PB、PC满足的等量关系为 .
已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
(1)如图1,求证:KE=GE;
(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;
(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=
,求CN的长.
某游乐场每天的赢利额y(元)与售出的门票x(张)之间的函数关系如图所示.
(1)当0≤x≤200,且x为整数时,y关于x的函数解析式为1.;当200≤x≤300,且x为整数时,y关于x的函数解析式为2.;
(2)要使游乐场一天的赢利超过1000元,试问该天至少应售出多少张门票;
(3)请思考并解释图象与y轴交点(0,﹣1000)的实际意义;
(4)根据图象,请你再提供2条信息.