如图,正方形OABC的顶点O在坐标原点,顶点A的坐标为(4,3).
(1)顶点的坐标为( , );
(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,当运动时间为2秒时,以P、Q、C为顶点的三角形是等腰三角形,求此时k的值.
(3)若正方形OABC以每秒个单位的速度沿射线AO下滑,直至顶点C落到
轴上时停止下
滑.设正方形OABC在轴下方部分的面积为S,求S关于滑行时间的函数关系式,并写出相应自变量的取值范围.
(备用图)
如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.
(1)求证:DH是圆O的切线;
(2)若,求证:A为EH的中点.
(3)若EA=EF=1,求圆O的半径.
如图,抛物线y1=ax2+2ax+1与轴有且仅有一个公共点A,经过点A的直线y2=kx+b交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.
(1)求的值;
(2)求直线AB对应的函数解析式;
(3)直接写出当y1 ≥y2 时,的取值范围.
某中学九年级(1)班为了了解全班学生的兴趣爱好情况,采取全面调查的方法,从舞蹈、书法、唱歌、绘画等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择其中一种自己喜欢的兴趣项目),请你根据图中提供的信息解答下列问题:
(1)九年级(1)班的学生人数为 ,并将图①中条形统计图补充完整;
(2)图②中表示“绘画”的扇形的圆心角是 度;
(3)“舞蹈”兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的舞蹈队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
如图,某商场为方便顾客使用购物车,准备将滚动电梯的坡面的倾斜角由45°降为30°,如果改动前电梯的坡面AB长为12米,点D、B、C在同一水平地面上.求改动后电梯水平宽度增加部分BC的长.(结果精确到0.1,参考数据:)
如图,在△ABC中,∠A=40°,∠C=60°.
(1)用直尺和圆规作∠ABC的平分线,交AC于D(保留作图痕迹,不要求写作法);
(2)在(1)的条件下,求∠BDC的度数.