满分5 > 初中数学试题 >

如图①已知抛物线y=ax2﹣3ax﹣4a(a<0)的图象与x轴交于A、B两点(A...

如图①已知抛物线y=ax2﹣3ax﹣4a(a<0)的图象与x轴交于A、B两点(AB的左侧),与y的正半轴交于点C,连结BC,二次函数的对称轴与x轴的交点为E.

(1)抛物线的对称轴与x轴的交点E坐标为_____,点A的坐标为_____

(2)若以E为圆心的圆与y轴和直线BC都相切,试求出抛物线的解析式;

(3)在(2)的条件下,如图②Q(m,0)是x的正半轴上一点,过点Qy轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,将CMN沿CN翻折,M的对应点为M′.在图②中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.

 

(1)(,0),(﹣1,0);(2)y=﹣x2+x+3.(3)存在,点Q坐标为(,0)或( ,0). 【解析】分析: (1)由抛物线的对称轴为直线求出抛物线y=ax2﹣3ax﹣4a(a<0)的对称轴方程,即可求得点E的坐标;在y=ax2﹣3ax﹣4a(a<0)令y=0可得关于x的方程ax2﹣3ax﹣4a=0,解方程即可求得点A的坐标; (2)如图1,设⊙E与直线BC相切于点D,连接DE,则DE⊥BC,结合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,这样由tan∠OBC=即可列出关于a的方程,解方程求得a的值即可得到抛物线的解析式; (3)由折叠的性质和MN∥y轴可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由点B的坐标为(4,0),点C的坐标为(0,3)可得线段BC=5,直线BC的解析式为y=﹣x+3,由此即可得到M、N的坐标分别为(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,这样由sin∠BCO=即可解得CM=m,然后分点N在直线BC的上方和下方两种情况用含m的代数式表达出MN的长度,结合MN=CM即可列出关于m的方程,解方程即可求得对应的m的值,从而得到对应的点Q的坐标. 详解: (1)∵对称轴x=, ∴点E坐标(,0), 令y=0,则有ax2﹣3ax﹣4a=0, ∴x=﹣1或4, ∴点A坐标(﹣1,0). 故答案分别为(,0),(﹣1,0). (2)如图①中,设⊙E与直线BC相切于点D,连接DE,则DE⊥BC, ∵DE=OE=,EB=,OC=﹣4a, ∴DB=, ∵tan∠OBC=, ∴,解得a=, ∴抛物线解析式为y=. (3)如图②中,由题意∠M′CN=∠NCB, ∵MN∥OM′, ∴∠M′CN=∠CNM, ∴MN=CM, ∵点B的坐标为(4,0),点C的坐标为(0,3), ∴ 直线BC解析式为y=﹣x+3,BC=5, ∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OC于F, ∵sin∠BCO=, ∴, ∴CM=m, ①当N在直线BC上方时,﹣x2+x+3﹣(﹣x+3)=m, 解得:m=或0(舍弃), ∴Q1(,0). ②当N在直线BC下方时,(﹣m+3)﹣(﹣m2+m+3)=m, 解得m=或0(舍弃), ∴Q2(,0), 综上所述:点Q坐标为(,0)或(,0).
复制答案
考点分析:
相关试题推荐

如图,已知AB是⊙O的直径,且AB=4,点C在半径OA上(点C与点O、点A不重合),过点CAB的垂线交⊙O于点D.连接OD,过点BOD的平行线交⊙O于点E,交CD的延长线于点F.

(1)若点E的中点,求∠F的度数;

(2)求证:BE=2OC;

(3)设AC=x,则当x为何值时BE•EF的值最大?最大值是多少?

 

查看答案

如图,在平面直角坐标系中有RtABC,A=90°,AB=AC,A(﹣2,0),B(0,1).

(1)求点C的坐标;

(2)将ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.

(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2x的取值范围.

 

查看答案

如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置P的铅直高度PB.(测倾器高度忽略不计,结果保留根号形式)

 

查看答案

某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.

(1)当参加旅游的人数不超过10人时,人均收费为     元;

(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?

 

查看答案

如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.

(1)求证:△AEC≌△ADB;

(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.