满分5 > 初中数学试题 >

某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可...

某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.

(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?

(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?

(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?

 

(1)x+10元;(2)每个定价为70元,应进货200个.(3)每个定价为65元时得最大利润,可获得的最大利润是6250元. 【解析】试题分析:(1)根据利润=销售价-进价列关系式,(2)总利润=每个的利润×销售量,销售量为400-10x,列方程求解,根据题意取舍,(3)利用函数的性质求最值. 试题解析:由题意得:(1)50+x-40=x+10(元), (2)设每个定价增加x元, 列出方程为:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使进货量较少,则每个定价为70元,应进货200个, (3)设每个定价增加x元,获得利润为y元, y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,当x=15时,y有最大值为6250,所以每个定价为65元时得最大利润,可获得的最大利润是6250元.  
复制答案
考点分析:
相关试题推荐

2017327日是全国中小学生安全教育日,某校为加强学生的安全意识,组织了全校学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整致,满分为10分) 进行统计,绘制了图中两幅不完整的统计图.

(1)a=_____,n=_____

(2)补全频数直方图;

(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?

 

查看答案

如图:AB是⊙O的直径,AC交⊙OG,EAG上一点,D为△BCE内心,BEADF,且∠DBE=BAD.

(1)求证:BC是⊙O的切线;

(2)求证:DF=DG;

(3)若∠ADG=45°,DF=1,则有两个结论:①AD•BD的值不变;②ADBD的值不变,其中有且只有一个结论正确,请选择正确的结论,证明并求其值.

 

查看答案

已知:关于x的方程x2+2x﹣k=0有两个不相等的实数根.

(1)求k的取值范围;

2)若αβ是这个方程的两个实数根,求: 的值;

(3)根据(2)的结果你能得出什么结论?

 

查看答案

如图,AB两个小机器人,自甲处同时出发相背而行,绕直径为整数米的圆周上运动,15分钟内相遇7次,如果A的速度每分钟增加6米,则AB15分钟内相遇9次,问圆周直径至多是多少米?至少是多少米?(取π=3.14)

 

查看答案

先化简,再求代数式的值.

÷,其中tan60°asin30°,请你取一个合适的数作为a的值代入求值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.