下列图形中,既是中心对称又是轴对称图形的为()
A. 正三角形 B. 等腰梯形 C. 平行四边形 D. 菱形.
下列运算正确的是( )
A. ; B.
; C.
; D.
.
下列根式中,与是同类二次根式的为( )
A. ; B.
; C.
; D.
.
如图1,在矩形ABCD中,AD=3,DC=4,动点P在线段DC上以每秒1个单位的速度从点D向点C运动,过点P作PQ∥AC交AD于Q,将△PDQ沿PQ翻折得到△PQE. 设点P的运动时间为t(s).
(1)当点E落在边AB上时,t的值为 ;
(2)设△PQE与△ADC重叠部分的面积为s,求s与t的函数关系式;
(3)如图2,以PE为直径作⊙O.当⊙O与AC边相切时,求CP的长.
函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
(1)如图1,在平面直角坐标系中,已知点A、B的坐标分别为A(6,0)、B(0,2),点C(x,y)在线段AB上,计算(x+y)的最大值。小明的想法是:这里有两个变量x、y,若最大值存在,设最大值为m,则有函数关系式y=-x+m,由一次函数的图像可知,当该直线与y轴交点最高时,就是m的最大值,(x+y)的最大值为 ;
(2)请你用(1)中小明的想法解决下面问题:
如图2,以(1)中的AB为斜边在右上方作Rt△ABM.设点M坐标为(x,y),求(x+y)的最大值是多少?
如图,抛物线y=a( x+1 )2-4a(a<0)与x轴交于点A、B(A在B的左侧),与y轴交于点C,CD∥x轴交抛物线于点D,连接BD交抛物线的对称轴于点E,连接BC、CE.
(1)抛物线顶点坐标为 (用含a的代数式表示),A点坐标为 ,
(2)当△DCE的面积为时,求a的值;
(3)当△BCE为直角三角形时,求抛物线的解析式.