满分5 > 初中数学试题 >

若实数abc满足a2+b2+c2=9,代数式(a﹣b)2+(b﹣c)2+(c﹣a...

若实数abc满足a2+b2+c2=9,代数式(a﹣b)2+(b﹣c)2+(c﹣a)2的最大值是(  )

A. 27    B. 18    C. 15    D. 12

 

A 【解析】试题分析:根据不等式的基本性质判断. 【解析】 ∵a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc, ∴﹣2ab﹣2ac﹣2bc=a2+b2+c2﹣(a+b+c)2① ∵(a﹣b)2+(b﹣c)2+(c﹣a)2=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc; 又(a﹣b)2+(b﹣c)2+(c﹣a)2 =3a2+3b2+3c2﹣(a+b+c)2 =3(a2+b2+c2)﹣(a+b+c)2② ①代入②,得=3×9﹣(a+b+c)2=27﹣(a+b+c)2, ∵(a+b+c)2≥0, ∴其值最小为0, 故原式最大值为27. 故选A.
复制答案
考点分析:
相关试题推荐

Pm+1m﹣2x轴上则点P的坐标为(  )

A. 0﹣3    B. 03    C. 30    D. ﹣30

 

查看答案

“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则 的值为(  )

A.     B. 49!    C. 2450    D. 2!

 

查看答案

π 3.1416 中,无理数的个数是(  )

A. 1    B. 2    C. 3    D. 4

 

查看答案

如图1,抛物线y=ax2+bx﹣2x轴交于点A﹣10),B40)两点,与y轴交于点C,经过点B的直线交y轴于点E02).

1)求该抛物线的解析式;

2)如图2,过点ABE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PAEAEDPD,求四边形EAPD面积的最大值;

3)如图3,连结AC,将AOC绕点O逆时针方向旋转,记旋转中的三角形为AOC,在旋转过程中,直线OC与直线BE交于点Q,若BOQ为等腰三角形,请直接写出点Q的坐标.

 

查看答案

如图RtABC中,B=90°CAB=30°,它的顶点A的坐标为(100),顶点B的坐标为(55),AB=10,点P从点A出发,沿ABC的方向匀速运动,同时点Q从点D02)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.

1)当点PAB上运动时,OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图),则点P的运动速度为     

2)求(1)中面积S与时间t之间的函数关系式及面积S的最大值及S取最大值时点P的坐标;

3)如果点PQ保持(1)中的速度不变,那么点P沿AB边运动时,OPQ的大小随着时间t的增大而增大;沿着BC边运动时,OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使OPQ=90°的点P      个.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.