数据21、12、18、16、20、21的众数和中位数分别是( )
A. 21和19 B. 21和17 C. 20和19 D. 20和18
下列计算正确的是( )
A. 2a×3a=5a B. (﹣2a)3=﹣6a3 C. 6a÷2a=3a D. (﹣a3)2=a6
如图,直线a∥b,AC⊥AB,AC与直线a,b分别相交于A,C,若∠2=30°,则∠1的度数为( )
A. 30° B. 45° C. 60° D. 75°
﹣2的相反数是( )
A. ﹣ B.
C. ﹣2 D. 2
如图,在平面直角坐标系中,抛物线y=x2﹣
x﹣
与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.
(1)求直线AE的解析式;
(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,求P点坐标?
(3)点G是线段CE的中点,将抛物线y=x2﹣
x﹣
沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
阅读下面材料:
小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求的值.
小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).请回答:的值为 .
参考小昊思考问题的方法,解决问题:
如图 3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3 .
(1)求的值;
(2)若CD=2,则BP=__________.