满分5 > 初中数学试题 >

抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相...

抛物线y=ax2+bx+3a0)经过点A10),B0),且与y轴相交于点C

(1)求这条抛物线的表达式;

(2)求∠ACB的度数;

(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当△DCE与△AOC相似时,求点D的坐标.

 

(1)抛物线的解析式为y=﹣2x2+x+3;(2)∠ACB=45°;(3)D(, ). 【解析】试题分析: (1)把点A、B、C的坐标分别代入已知抛物线的解析式列出关于系数的三元一次方程组   9a−3b+c=0 a+b+c=0 4a−2b+c=1   ,通过解该方程组即可求得系数的值; (2)由(1)中的抛物线解析式易求点M的坐标为(0,1).所以利用待定系数法即可求得直线AM的关系式为y= 1 3 x+1.由题意设点D的坐标为(x0,− 1 3 x02− 2 3 x0+1),则点F的坐标为(x0, 1 3 x0+1).易求DF=− 1 3 x02− 2 3 x0+1−( 1 3 x0+1)=− 1 3 x02−x0=− 1 3 (x0+ 3 2 )2+ 3 4 .根据二次函数最值的求法来求线段DF的最大值; (3)需要对点P的位置进行分类讨论:点P分别位于第一、二、三、四象限四种情况.此题主要利用相似三角形的对应边成比例进行解答. 试题解析: 由题意可知   9a−3b+c=0 a+b+c=0 4a−2b+c=1   .解得   a=− 1 3 b=− 2 3 c=1   . ∴抛物线的表达式为y=- 1 3 x2− 2 3 x+1. (2)将x=0代入抛物线表达式,得y=1.∴点M的坐标为(0,1). 设直线MA的表达式为y=kx+b,则   b=1 −3k+b=0   . 解得  
复制答案
考点分析:
相关试题推荐

如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.

(1)∠ACB=     °,理由是:     

(2)猜想△EAD的形状,并证明你的猜想;

(3)若AB=8,AD=6,求BD.

 

查看答案

某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.

(1)求A、B型号衣服进价各是多少元?

(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.

 

查看答案

如图,正方形ABCD、等腰RtBPQ的顶点P在对角线AC上(点PA、C不重合),QPBC交于E,QP延长线与AD交于点F,连接CQ.

(1)①求证:AP=CQ;②求证:PA2=AF•AD;

(2)若AP:PC=1:3,求tanCBQ.

 

查看答案

如图已知点A(1,a是反比例函数的图象上一点直线与反比例函数的图象的交点为点BDB(3,﹣1),

(1)求反比例函数的解析式

(2)求点D坐标并直接写出y1y2x的取值范围

(3)动点Px,0)x轴的正半轴上运动当线段PA与线段PB之差达到最大时求点P的坐标

 

查看答案

垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.

          运动员甲测试成绩表

测试序号

1

2

3

4

5

6

7

8

9

10

成绩(分)

7

6

8

7

7

5

8

7

8

7

 

(1)写出运动员甲测试成绩的众数和中位数;

(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S2=0.8、S2=0.4、S2=0.8)

(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.