如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)求证:AB∥CD;
(2)如图2,∠AEF与∠EFC的角平分线相交于点P,直线EP与直线CD交于点G,过点G做EG的垂线,交直线MN于点H.求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点,且∠PHK=∠HPK,作∠EPK的平分线交直线MN于点Q.问∠HPQ的大小是否发生变化?若不变,请求出∠HPQ的度数;若变化,请说明理由.
如图,∠AFD=∠1,AC∥DE.
(1)试说明:DF∥BC;
(2)若∠1=68°,DF平分∠ADE,求∠B的度数.
如图,已知∠1=30°,∠B=60°,AB⊥AC,将证明AD∥BC的过程填写完整.
证明:∵AB⊥AC
∴∠ = °( )
∵∠1=30°
∴∠BAD=∠ +∠ = °
又∵∠B=60°
∴∠BAD+∠B= °
∴AD∥BC( )
如图所示,三角形ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).
(1)三角形A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标.
(2)求△ABC的面积.
如图,这是某市部分简图,为了确定各建筑物的位置:
(1)请你以火车站为原点建立平面直角坐标系.
(2)写出体育场、宾馆的坐标.
(3)图书馆的坐标为(﹣4,﹣3),请在图中标出图书馆的位置.
如图,在直角坐标系中,设一动点M自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…如此继续运动下去,设Pn(xn,yn),n=1,2,3,…则x1+x2+…+x99+x100= .