满分5 > 初中数学试题 >

【操作发现】如图 1,△ABC 为等边三角形,点 D 为 AB 边上的一点,∠D...

【操作发现】如图 1,△ABC 为等边三角形,点 D AB 边上的一点,∠DCE=30°,将线段 CD 绕点 C 顺时针旋转 60°得到线段 CF,连接 AFEF. 请直接 写出下列结果:

① ∠EAF的度数为__________

DEEF之间的数量关系为__________

【类比探究】如图 2,△ABC 为等腰直角三角形,∠ACB=90°,点 D AB 边上的一点∠DCE=45°,将线段 CD 绕点 C 顺时针旋转 90°得到线段 CF,连接 AFEF.

①则∠EAF的度数为__________

② 线段 AEEDDB 之间有什么数量关系?请说明理由;

【实际应用】如图 3,△ABC 是一个三角形的余料.小张同学量得∠ACB=120°,AC=BC, 他在边 BC 上取了 DE 两点,并量得∠BCD=15°、∠DCE=60°,这样 CDCE 将△

ABC 分成三个小三角形,请求△BCD、△DCE、△ACE 这三个三角形的面积之比.

        

 

120° DE=EF 90° 【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°; ②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可; (2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°; ②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论. (3)把△BCD绕点C顺时针旋转120°得到△ACF,则可得△ACF≌△BCD,△FCE≌△DEC,得到AF=BD,EF=ED,△AEF是含30°角的直角三角形,S△BCD:S△DCE:S△ACE=BD:ED:AE= AF:EF:AE,即可得到答案. 试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中, ,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°; ②DE=EF.理由如下: ∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中, ,∴△DCE≌△FCE(SAS),∴DE=EF; (2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中, ,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°; ②AE2+DB2=DE2,理由如下: ∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中, ,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE2+AF2=EF2.又∵AF=DB,∴AE2+DB2=DE2. (3)【实际应用】把△BCD绕点C顺时针旋转120°得到△ACF,则△ACF≌△BCD.∵∠ACB=120°,AC=BC ,∴∠B=∠C=30°,∴∠CDE=∠B+∠BCD=30°+15°=45°,∴∠CDB=180°-45°=135°.∵△ACF≌△BCD,∴AE=DB,FC=DC,∠FCA=∠BCD=15°,∠FAC=∠B=30°,∠ACF=∠BDC=135°,∴∠FCE=∠ECD=60°.∵FC=DC,EC=EC,∴△FCE≌△DEC,∴EF=ED,∠CFE=∠CDE=45°,∴∠AFE=135°-45°=90°.∵∠FAE=30°+30°=60°,∴∠AEF=30°,∴AF:EF:AE=1: :2,∴S△BCD:S△DCE:S△ACE=BD:ED:AE= AF:EF:AE=1: :2.
复制答案
考点分析:
相关试题推荐

已知:如图,在△ABC 中,∠C=90°,∠BAC 的平分线 AD BC于点 D,过点 D DEAD AB 于点 E,以 AE 为直径作⊙O

 

(1)求证:BC 是⊙O 的切线;

(2)若 AC=3,BC=4,求 BE 的长.

(3)在(2)的条件中,求 cosEAD 的值.

 

查看答案

3 月初某商品价格上涨,每件价格上涨 20%.用 3000 元买到的该商品 件数比涨价前少 20 件.3 月下旬该商品开始降价,经过两次降价后,该商品价格为每 件 19.2 元.

(1)求 3 月初该商品上涨后的价格;

(2)若该商品两次降价率相同,求该商品价格的平均降价率.

 

查看答案

如图,在ABCD 中,∠ADB=90°,点 E AB 边的中点,点 F CD 边的中点.

(1)求证:四边形 DEBF 是菱形;

(2)当∠A 等于多少度时,四边形 DEBF 是正方形?并说明你的理由.

 

查看答案

小王和小李都想去体育馆,观看在我县举行的“市长杯”青少年校园 足球联赛,但两人只有一张门票,两人想通过摸球的方式来决定谁去观看,规则如下: 在两个盒子内分别装入标有数字 1,2,3,4 的四个和标有数字 1,2,3 的三个完全相 同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于 6,那 么小王去,否则就是小李去.

(1)用树状图或列表法求出小王去的概率;

(2)小李说:“这种规则不公平.”你认同他的说法吗?请说明理由.

 

查看答案

某中学开展了手机伴我健康行主题活动,他们随机抽取部分学生进行使用手机目的每周使用手机的时间的问卷调查,并绘制成如图①②所示的统计图,已知查资料的人数是40人. 

请你根据图中信息解答下列问题: 

(1)在扇形统计图中,玩游戏对应的圆心角度数是_____°; 

(2)补全条形统计图; 

(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.