已知:如图,在△ABC 中,∠C=90°,∠BAC 的平分线 AD 交 BC于点 D,过点 D 作 DE⊥AD 交 AB 于点 E,以 AE 为直径作⊙O.
(1)求证:BC 是⊙O 的切线;
(2)若 AC=3,BC=4,求 BE 的长.
(3)在(2)的条件中,求 cos∠EAD 的值.
3 月初某商品价格上涨,每件价格上涨 20%.用 3000 元买到的该商品 件数比涨价前少 20 件.3 月下旬该商品开始降价,经过两次降价后,该商品价格为每 件 19.2 元.
(1)求 3 月初该商品上涨后的价格;
(2)若该商品两次降价率相同,求该商品价格的平均降价率.
如图,在□ABCD 中,∠ADB=90°,点 E 为 AB 边的中点,点 F 为CD 边的中点.
(1)求证:四边形 DEBF 是菱形;
(2)当∠A 等于多少度时,四边形 DEBF 是正方形?并说明你的理由.
小王和小李都想去体育馆,观看在我县举行的“市长杯”青少年校园 足球联赛,但两人只有一张门票,两人想通过摸球的方式来决定谁去观看,规则如下: 在两个盒子内分别装入标有数字 1,2,3,4 的四个和标有数字 1,2,3 的三个完全相 同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于 6,那 么小王去,否则就是小李去.
(1)用树状图或列表法求出小王去的概率;
(2)小李说:“这种规则不公平.”你认同他的说法吗?请说明理由.
某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②所示的统计图,已知“查资料”的人数是40人.
请你根据图中信息解答下列问题:
(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_____°;
(2)补全条形统计图;
(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.
已知关于的一元二次方程
.
(1)求证:该方程有两个实数根;
(2)若该方程的两个实数根、
满足
,求
的值.