由若干个边长为1的小正方形组成的网格,小正方形的顶点叫做格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x.
(1)上图中的格点多边形,其内部都只有一个格点,它们的面积(S)与各边上格点的个数和(x)的对应关系如下表,请写出S与x之间的关系式.答:S=_________.
多边形的序号 | ① | ② | ③ | ④ | … |
多边形的面积S | 2 | 2.5 | 3 | 4 | … |
各边上格点的个数和x | 4 | 5 | 6 | 8 | … |
(2)请再画出三个边数分别为3、4、5的格点多边形,使这些多边形内部都是有且只有2个格点.可得此类多边形的面积(S)与它各边上格点的个数和(x)之间的关系式是:S=________.
某公司共25名员工,下表是他们月收入的资料.
月收入/元 | 45000 | 18000 | 10000 | 5500 | 4800 | 3400 | 3000 | 2200 |
人数 | 1 | 1 | 1 | 3 | 6 | 1 | 11 | 1 |
(1)该公司员工月收入的中位数是__ __元,众数是__ __元.
(2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.
九(1)班课题学习小组,为了了解大树生长状况,去年在学校门前点 处测得一棵大树顶点
的仰角为
,树高
.今年他们仍在原点
处测得树顶点
的仰角为
,问这棵树在这一年里生长了多少米?(结果保留两位小数,参考数据:
,
,
,
)
已知关于 的方程
.
(1)若该方程的一个根为 ,求
的值;
(2)求证:不论 取任何实数,该方程总有两个不相等的实数根.
如图 ,
,
,求证:
.
甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.
(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;
(2)求出现平局的概率.