满分5 > 初中数学试题 >

阅读下列材料,完成任务: 自相似图形 定义:若某个图形可分割为若干个都与它相似的...

阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为     

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为     

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择     题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=     (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=     (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=     (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=     (用含m,n,b的式子表示).

 

(1);(2);(3)A、①;② ;B、①或;②或. 【解析】试题分析:(1)根据相似比的定义求解即可;(2)由勾股定理求得AB=5,根据相似比等于可求得答案;(3)A.①由矩形ABEF∽矩形FECD,列出比例式整理可得;②由每个小矩形都是全等的,可得其边长为b和a,列出比例式整理即可;B.①分当FM是矩形DFMN的长时和当DF是矩形DFMN的长时两种情况,根据相似多边形的性质列比例式求解;②由题意可知纵向2块矩形全等,横向3块矩形也全等,所以DN=b,然后分当FM是矩形DFMN的长时和当DF是矩形DFMN的长时两种情况,根据相似多边形的性质列比例式求解. 【解析】 (1)∵点H是AD的中点, ∴AH=AD, ∵正方形AEOH∽正方形ABCD, ∴相似比为: ==; 故答案为:; (2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5, ∴△ACD与△ABC相似的相似比为: =, 故答案为:; (3)A、①∵矩形ABEF∽矩形FECD, ∴AF:AB=AB:AD, 即a:b=b:a, ∴a=b; 故答案为: ②每个小矩形都是全等的,则其边长为b和a, 则b: a=a:b, ∴a=b; 故答案为: B、①如图2, 由①②可知纵向2块矩形全等,横向3块矩形也全等, ∴DN=b, Ⅰ、当FM是矩形DFMN的长时, ∵矩形FMND∽矩形ABCD, ∴FD:DN=AD:AB, 即FD: b=a:b, 解得FD=a, ∴AF=a﹣a=a, ∴AG===a, ∵矩形GABH∽矩形ABCD, ∴AG:AB=AB:AD 即a:b=b:a 得:a=b; Ⅱ、当DF是矩形DFMN的长时, ∵矩形DFMN∽矩形ABCD, ∴FD:DN=AB:AD 即FD: b=b:a 解得FD=, ∴AF=a﹣=, ∴AG==, ∵矩形GABH∽矩形ABCD, ∴AG:AB=AB:AD 即:b=b:a, 得:a=b; 故答案为:或; ②如图3, 由①②可知纵向m块矩形全等,横向n块矩形也全等, ∴DN=b, Ⅰ、当FM是矩形DFMN的长时, ∵矩形FMND∽矩形ABCD, ∴FD:DN=AD:AB, 即FD: b=a:b, 解得FD=a, ∴AF=a﹣a, ∴AG===a, ∵矩形GABH∽矩形ABCD, ∴AG:AB=AB:AD 即a:b=b:a 得:a=b; Ⅱ、当DF是矩形DFMN的长时, ∵矩形DFMN∽矩形ABCD, ∴FD:DN=AB:AD 即FD: b=b:a 解得FD=, ∴AF=a﹣, ∴AG==, ∵矩形GABH∽矩形ABCD, ∴AG:AB=AB:AD 即:b=b:a, 得:a=b; 故答案为: b或b.
复制答案
考点分析:
相关试题推荐

某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.

(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.

(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?

 

查看答案

如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画圆,P是⊙O上一动点且在第一象限内,过点P作⊙O的切线,与x、y轴分别交于点A、B.

(1)求证:△OBP与△OPA相似;

(2)当点PAB中点时,求出P点坐标;

(3)在⊙O上是否存在一点Q,使得以Q,O,A、P为顶点的四边形是平行四边形.若存在,试求出Q点坐标;若不存在,请说明理由.

 

查看答案

为了了解成都市初中学生数学核心素养的掌握情况,教育科学院命题教师赴某校初三年级进行调 研,命题教师将随机抽取的部分学生成绩(得分为整数,满分 160 分)分为 5 组:第一组 85100;第二组100115;第三组 115130;第四组 130145;第五组 145160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:

(1)本次调查共随机抽取了该年级多少名学生?成绩为第五组的有多少名学生?

(2)针对考试成绩情况,现各组分别派出1名代表(分别用 A、B、C、D、E 表示5个小组中选出来的同学),命题教师从这5名同学中随机选出两名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名同学刚好来自第一、五组的概率.

 

查看答案

如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.

 

查看答案

如图,在平面直角坐标系中,反比例函数y=x0)的图象上有一点Am4),过点AABx轴于点B,将点B向右平移2个单位长度得到点C,过点Cy轴的平行线交反比例函数的图象于点D

(1)点D的横坐标为_____(用户含m的代数式表示).

2)当CD=时,求反比例函数所对应的函数表达式.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.