已知:∠MON=α,点P是∠MON角平分线上一点,点A在射线OM上,作∠APB=180°-α,交直线ON于点B,PC⊥ON于C.
(1)如图1,若∠MON=90°时,求证:PA=PB;
(2)如图2,若∠MON=60°时,写出线段OB,OA及BC之间的数量关系,并说明理由;
(3)如图3,若∠MON=60°时,点B在射线ON的反向延长线上时,(2)中结论还成立吗?若不成立,直接写出线段OB,OA及BC之间的数量关系(不需要证明).
已知一次函数y=-x+4的图象与x轴、y轴的交点分别为A、B,点P在直线y=2x上.
(1)若点P是一次函数y=-x+4的图象与直线y=2x的交点,求△OBP的面积;
(2)若点P的坐标为(3,6),求△ABP的面积;
(3)若△ABP的面积为12时,求点P的坐标.
已知:如图,△ABC中,AB=AC,∠ABC=60°,AD=CE,求∠BPD的度数.
画出函数的图象.
(1)函数的自变量x的取值范围是________;
(2)列表(把表格补充完整)
x | …… | -2 | -1 | 0 | 1 | 2 | 3 | 4 | …… |
y |
|
|
|
|
|
|
|
|
|
(3)描点、连线
(4)结合图象,写出函数的一条性质________________________________________.
2017年5月,“一带一路”国际合作高峰论坛在中国北京成功召开. 会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次. 经调研得知,原来这路公交车平均每天共运送乘客5600人,高峰论坛期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问高峰论坛期间这路公交车每天运行多少车次?
某地区要在区域S内(即∠COD内部)建一个超市M,如图,按照要求,超市M到两个新建的居民小区A、B的距离相等,到两条公路OC,OD的距离也相等. 这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)