已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A,B两种型号,有关数据如下:
桌椅型号 | 一套桌椅所坐学生人数(单位:人) | 生产一套桌椅所需木材(单位:m3) | 一套桌椅的生产成本(单位:元) | 一套桌椅的运费(单位:元) |
A | 2 | 0.5 | 100 | 2 |
B | 3 | 0.7 | 120 | 4 |
设生产A型桌椅x(套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y元.
(1)求y与x之间的关系式,并指出x的取值范围;
(2)当总费用y最小时,求相应的x值及此时y的值.
已知实数a为常数且a≠3,解不等式组并根据a的取值情况写出其解集.
解不等式组,并写出不等式组的整数解.
解不等式-
≤1,并把解集表示在数轴上.
按下列程序进行运算(如图)
规定:程序运行到“判断结果是否大于244”为一次运算.若x=5,则运算进行______次才停止;若运算进行了5次才停止,则x的取值范围是______.
定义新运算:对于任意实数a,b都有a△b=ab-a-b+1,例如:2△4=24-2-4+1=8-6+1=3.请根据上述知识解决问题:若3△x的值大于5而小于9,那么x的取值范围是__________.