满分5 > 初中数学试题 >

已知关于x的方程a2x2+(2a-1)x+1=0有两个不相等的实数根x1,x2....

已知关于x的方程a2x2+2a1x+1=0有两个不相等的实数根x1x2.(1)求a的取值范围;(2)是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.

【解析】
1)根据题意,得=2a124a2>0,解得a<

∴当a<0时,方程有两个不相等的实数根.

2)存在,如果方程的两个实数根x1x2互为相反数,则x1+x2==0 

解得a=,经检验,a=是方程①的根.

∴当a=时,方程的两个实数根x1x2互为相反数.

上述解答过程是否有错误?如果有,请指出错误之处,并解答.

 

(1)上述解答有错误,理由见解析;(2)上述解答有错误,理由见解析. 【解析】试题分析:(1)根据根的判别式结合一元二次方程的二次项系数不为0即可作出判断; (2)根据a=不符合(1)中得到的a的范围即可作出判断. (1)若方程有两个不相等实数根,则方程首先满足是一元二次方程, ∴a2≠0且满足(2a-1)2-4a2>0, ∴a<且a≠0; (2)a不可能等于 ∵(1)中求得方程有两个不相等实数根,同时a的取值范围是a<且a≠0, 而a=>不符合题意,所以不存在这样的a值,使方程的两个实数根互为相反数 考点:一元二次方程根的判别式
复制答案
考点分析:
相关试题推荐

某商场试销一种成本价为每件60元的服装,规定试销期间销售单价不低于成本单价,获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=80时,y=40;x=70时,y=50.

(1)求一次函数y=kx+b的表达式;

(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?

 

查看答案

随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示;种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元)

1)分别求出利润y1y2关于投资量x的函数关系式;

2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润,他能获取的最大利润是多少?

 

查看答案

(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”的方式给出分析过程)

(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是       (请直接写出结果).

 

查看答案

某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:

 

笔试

面试

体能

83

79

90

85

80

75

80

90

73

 

(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.

(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.

 

查看答案

如图,ABCABD都是⊙O的内接三角形,圆心O在边AB上,边AD分别与BCOC交于EF两点,点C的中点.

(1)求证:OFBD

(2)若点F为线段OC的中点,且⊙O的半径R6 cm,求图中阴影部分(弓形)的面积.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.