满分5 > 初中数学试题 >

某商场试销一种成本价为每件60元的服装,规定试销期间销售单价不低于成本单价,获利...

某商场试销一种成本价为每件60元的服装,规定试销期间销售单价不低于成本单价,获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=80时,y=40;x=70时,y=50.

(1)求一次函数y=kx+b的表达式;

(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?

 

(1)一次函数的解析式为y=﹣x+120(60≤x≤84);(2)销售价定为每件84元时,可获得最大利润,最大利润是864元. 【解析】试题分析:(1)根据题意得:销售单价x≥成本60元,获利不得高于40%,则销售单价x≤60(1+40%);再利用待定系数法把x=80时,y=40;x=70时,y=50代入一次函数y=kx+b中,求出k,b即可得到关系式; (2)根据题目意思,表示出销售额和成本,然后表示出利润=销售额-成本,整理后根据x的取值范围求出最大利润. 试题解析:(1)60≤x≤60(1+40%), ∴60≤x≤84, 由题得: ,解得:k=﹣1,b=120, ∴一次函数的解析式为y=﹣x+120(60≤x≤84); (2)销售额:xy=x(﹣x+120)元;成本:60y=60(﹣x+120), ∴W=xy﹣60y, =x(﹣x+120)﹣60(﹣x+120), =(x﹣60)(﹣x+120), =﹣x2+180x﹣7200, =﹣(x﹣90)2+900, ∴W=﹣(x﹣90)2+900,(60≤x≤84), 当x=84时,W取得最大值,最大值是:﹣(84﹣90)2+900=864(元), 即销售价定为每件84元时,可获得最大利润,最大利润是864元. 【点睛】本题主要考查了待定系数法求一次函数解析式,二次函数在实际问题中的应用,弄清题意,理清关系是解题的关键.  
复制答案
考点分析:
相关试题推荐

随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示;种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元)

1)分别求出利润y1y2关于投资量x的函数关系式;

2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润,他能获取的最大利润是多少?

 

查看答案

(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”的方式给出分析过程)

(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是       (请直接写出结果).

 

查看答案

某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:

 

笔试

面试

体能

83

79

90

85

80

75

80

90

73

 

(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.

(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.

 

查看答案

如图,ABCABD都是⊙O的内接三角形,圆心O在边AB上,边AD分别与BCOC交于EF两点,点C的中点.

(1)求证:OFBD

(2)若点F为线段OC的中点,且⊙O的半径R6 cm,求图中阴影部分(弓形)的面积.

 

查看答案

如图,AM为⊙O的切线,A为切点,BDAM于点DBD交⊙O于点COC平分∠AOB,求∠B的度数.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.