某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:
| 笔试 | 面试 | 体能 |
甲 | 83 | 79 | 90 |
乙 | 85 | 80 | 75 |
丙 | 80 | 90 | 73 |
(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.
(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.
如图,△ABC和△ABD都是⊙O的内接三角形,圆心O在边AB上,边AD分别与BC,OC交于E,F两点,点C为的中点.
(1)求证:OF∥BD;
(2)若点F为线段OC的中点,且⊙O的半径R=6 cm,求图中阴影部分(弓形)的面积.
如图,AM为⊙O的切线,A为切点,BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB,求∠B的度数.
已知△ABC的两边AB、BC的长是关于x的一元二次方程x2 (2k+3)x+k2+3k+2=0的两个实数根,第三边的长为5.
(1)当k为何值时,△ABC是直角三角形?
(2)当k为何值时,△ABC是等腰三角形?请求出此时△ABC的周长.
(1)x2=6x-
;(2)(x+3)2+3(x+3)-4=0.
如图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图象,观察图象写出y2≥y1时,x的取值范围__.