满分5 > 初中数学试题 >

如图(1)的矩形纸片折叠,B、C两点恰好重合落在AD边上的点P处,如图(2),已...

如图(1)的矩形纸片折叠,BC两点恰好重合落在AD边上的点P处,如图(2),已知∠MPN=90ºPM=3PN=4,那么矩形ABCD的周长为             

 

 

28.8 【解析】 考点:翻折变换(折叠问题). 分析:根据勾股定理,得MN=5,进而可得出BC的长,根据直角三角形的面积公式的两种表示方法,可求出AB的长,根据矩形的周长=2(AB+BC)即可得出答案. 解答:【解析】 由题意得,∠MPN=90°,PM=3cm,PN=4cm, 在RT△PMN中,MN2=PM2+PN2, ∴MN=5,BC=PM+PN+MN=3+4+5=12, 根据直角三角形的面积公式得,AB===2.4, 则矩形ABCD的周长=2(AB+BC)=28.8. 故答案为:28.8.
复制答案
考点分析:
相关试题推荐

都是无理数,且,则的值分别是____________(填一组满足条件的值).

 

查看答案

如图,点P∠AOB的角平分线上一点,过PPC//OAOB于点C.若∠AOB60°OC=4,则点POA的距离PD等于            

 

查看答案

如图,在梯形ABCD中,AD∥BC,若再加上一个条件___________,则可得梯形ABCD是等腰梯形。

 

查看答案

如图,一个顶角为40°的等腰三角形纸片剪去顶角后,得到一个四边形,则∠1+∠2=________.

 

查看答案

请将,,连接起来,______________

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.