满分5 > 初中数学试题【答案带解析】

已知直线y=2x-5与x轴和y轴分别交于点A和点B,抛物线y=-x2+bx+c的...

已知直线y=2x-5与x轴和y轴分别交于点A和点B,抛物线y=-x2+bx+c的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.

(1)如图,当点M与点A重合时,求抛物线的解析式;

(2)在(1)的条件下,求点N的坐标和线段MN的长;

(3)抛物线y=-x2+bx+c在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.

 

(1)抛物线的解析式; (2)点N的坐标为,线段MN的长为; (3)存在点M(2,-1),或(4,3) 【解析】试题分析:(1)①首先求得直线与x轴,y轴的交点坐标,利用二次函数的对称轴的公式即可求解; ②N在直线上同时在二次函数上,因而设N的横坐标是a,则在两个函数上对应的点的纵坐标相同,据此即可求得a的值,即N的坐标,过N作NC⊥x轴,垂足为C,利用勾股定理即可求得MN...
复制答案
考点分析:
考点1:二次函数
定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。
二次函数的解析式有三种形式:
(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式: (a,h,k是常数,a≠0)
(3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。

二次函数的一般形式的结构特征:
①函数的关系式是整式;
②自变量的最高次数是2;
③二次项系数不等于零。
二次函数的判定:
二次函数的一般形式中等号右边是关于自变量x的二次三项式;
当b=0,c=0时,y=ax2是特殊的二次函数;
判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。
考点2:图形的相似
形状相同,大小不同的两个图形相似
相关试题推荐

如图,△ABC是⊙O的内接三角形,点D,E在⊙O上,连接AE,DE,CD,BE,CE,∠EAC+∠BAE=180°,

(1)判断BE与CE之间的数量关系,并说明理由;

(2)求证:△ABE≌△DCE;

(3)若∠EAC=60°,BC=8,求⊙O的半径.

 

查看答案

如图,已知点D在反比例函数y=的图象上,过点D作x轴的平行线交y轴于点B(0,3),过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=

(1)求反比例函数y=和直线y=kx+b的解析式;

(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;

(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA于点M,求∠BMC的度数.

 

查看答案

现代互联网技术的广泛应用.催生了快递行业的高速发展.据凋查,某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月的投递总件数的增长率相同.

(1)求该快递公司投递快递总件数的月平均增长率.

(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的26名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?

 

查看答案

小宇想测量位于池塘两端的AB两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线ABEF之间的距离为60米,求AB两点的距离.

 

查看答案

近几年来全国各省市政府民生实事之一的公共自行车建设工作已基本完成,网上资料显示呼和浩特市某部门对2017年4月份中的7天进行了公共自行车日

租量的统计,结果如图:

(1)求这7天日租车量的众数、中位数和平均数;

(2)用(1)中的平均数估计4月份(30天)该市共租车多少万车次;

(3)资料显示,呼市政府在公共自行车建设项目中共投入9600万元,估计2017年共租车3200万车次,每车次平均收入租车费0.1元,求2017年该市租车费收入占总投入的百分率(精确到0.1%).

 

查看答案
试题属性
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.答案无忧