满分5 > 初中数学试题 >

阅读材料: 在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0...

阅读材料:

在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=

例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.

【解析】
由直线4x
+3y﹣3=0知,A=4,B=3,C=﹣3,

点P0(0,0)到直线4x+3y﹣3=0的距离为d==

根据以上材料,解决下列问题:

问题1:点P1(3,4)到直线y=﹣x+的距离为    

问题2:已知:C是以点C(2,1)为圆心,1为半径的圆,C与直线y=﹣x+b相切,求实数b的值;

问题3:如图,设点P为问题2中C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出SABP的最大值和最小值.

 

(1)4;(2)b=5或15;(3)最大值为4,最小值为2. 【解析】试题分析:(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题;(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题. 试题解析: (1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4; (2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1, ∴C(2,1)到直线3x+4y﹣b=0的距离d=1, ∴=1, 解得b=5或15. (3)点C(2,1)到直线3x+4y+5=0的距离d==3, ∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2, ∴S△ABP的最大值=×2×4=4,S△ABP的最小值=×2×2=2. 考点:一次函数综合题.  
复制答案
考点分析:
相关试题推荐

某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.

(1)问实际每年绿化面积多少万平方米?

(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?

 

查看答案

若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.

(1)写出所有个位数字是5的“两位递增数”;

(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.

 

查看答案

如图,已知BA=AE=DC,AD=EC,CEAE,垂足为E.

(1)求证:DCA≌△EAC;

(2)只需添加一个条件,即     ,可使四边形ABCD为矩形.请加以证明.

 

查看答案

(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×﹣2

(2)先化简,再求值:÷,其中a=

 

查看答案

如图,在平面直角坐标系中,经过点A的双曲线y=(x0)同时经过点B,且点A在点B的左侧,点A的横坐标为AOB=OBA=45°,则k的值为    

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.