剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )
A. B.
C.
D.
﹣3的绝对值是( )
A.﹣3 B.3 C.±3 D.
定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.
例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P为△ABC的自相似点.
请你运用所学知识,结合上述材料,解决下列问题:
在平面直角坐标系中,点M是曲线C:上的任意一点,点N是x轴正半轴上的任意一点.
(1) 如图2,点P是OM上一点,∠ONP=∠M, 试说明点P是△MON的自相似点; 当点M的坐标是,点N的坐标是
时,求点P 的坐标;
(2) 如图3,当点M的坐标是,点N的坐标是
时,求△MON的自相似点的坐标;
(3) 是否存在点M和点N,使△MON无自相似点,?若存在,请直接写出这两点的坐标;若不存在,请说明理由.
已知函数的图象与
轴有两个公共点.
(1)求的取值范围,写出当
取范围内最大整数时函数的解析式;
(2)题(1)中求得的函数记为C1
①当时,
的取值范围是
,求
的值;
②函数C2:的图象由函数C1的图象平移得到,其顶点P落在以原
点为圆心,半径为的圆内或圆上.设函数C1的图象顶点为M,求点P与点M距
离最大时函数C2的解析式.
实验探究:
(1)如图1,对折矩形纸片ABCD,使AD与BC重合, 得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.
(2)将图1中的三角形纸片BMN剪下,如图2. 折叠该纸片,探究MN与BM的数量关系.写出折叠方案, 并结合方案证明你的结论.
如图,已知⊙O的直径AB=12,弦AC=10,D是
的中点,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)求AE的长.