满分5 > 初中数学试题 >

设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为...

设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为R .对于一个点与等边三角形,给出如下定义:满足rdR的点叫做等边三角形的中心关联点.在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B(﹣,﹣1),C(,﹣1).

(1)已知点D(2,2),E,1),F,﹣1).在DEF中,是等边△ABC的中心关联点的是             

(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°.

①若线段AM上存在等边△ABC的中心关联点Pmn),求m的取值范围;

②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b总存在等边△ABC的中心关联点;(直接写出答案,不需过程)

(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为.当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.

 

(1)E,F;(2)①0≤m≤,②﹣ ≤b≤2;(3)存在,t= 【解析】试题解析:(1)根据等边三角形的中心关联点的定义,可得 点E、F 是等边三角形的中心关联点; (2)①依题意A(0,2),M(,0)可求得直线AM的解析式为,所以△OAE为等边三角形,所以AE边上的高长为.当点P在AE上时, ≤OP≤2.所以当点P在AE上时,点P都是等边△ABC的中心关联点.所以0≤m≤; ②同①得﹣≤b≤2; (3)t= 【解析】 (1)E,F; (2)①【解析】 依题意A(0,2),M(,0). 可求得直线AM的解析式为. 经验证E在直线AM上. 因为OE=OA=2,∠MAO=60°, 所以△OAE为等边三角形, 所以AE边上的高长为. 当点P在AE上时, ≤OP≤2. 所以当点P在AE上时,点P都是等边△ABC的中心关联点. 所以0≤m≤; ②﹣≤b≤2; (3)t=  
复制答案
考点分析:
相关试题推荐

在等腰△ABC中,

1如图1,若ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________

2ABC为等边三角形,点D为线段BC上一动点(不与BC重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.

①根据题意在图2中补全图形;

②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:

思路1:要证明CD=BE,只需要连接AE,并证明ADC≌△AEB

思路2:要证明CD=BE,只需要过点DDFAB,交ACF,证明ADF≌△DEB

思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明ADC≌△DEG

……

请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)

3小玉的发现启发了小明:如图3,若AB=AC=kBCAD=kDE且∠ADE=C,此时小明发现BEBDAC三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明)

 

查看答案

二次函数,其中

(1)求该二次函数的对称轴方程;

(2)过动点C(0, )作直线y轴.

① 当直线与抛物线只有一个公共点时, 求的函数关系;

② 若抛物线与x轴有两个交点,将抛物线在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象. 当=7时,直线与新的图象恰好有三个公共点,求此时的值;

(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求的取值范围.

 

查看答案

在课外活动中,我们要研究一种凹四边形——燕尾四边形的性质.

定义1:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形(如图1).

(1)根据凹四边形的定义,下列四边形是凹四边形的是(填写序号)        

①         ②        ③

定义2:两组邻边分别相等的凹四边形叫做燕尾四边形(如图2).

特别地,有三边相等的凹四边形不属于燕尾四边形.

小洁根据学习平行四边形、菱形、矩形、正方形的经验,对燕尾四边形的性质进行了探究.

下面是小洁的探究过程,请补充完整:

(2)通过观察、测量、折叠等操作活动,写出两条对燕尾四边形性质的猜想,并选取其中的一条猜想加以证明;

(3)如图2,在燕尾四边形ABCD中,AB=AD=6,BC=DC=4,∠BCD=120°,求燕尾四边形ABCD的面积(直接写出结果).

 

查看答案

如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB, DF.

(1)求证:DF是⊙O的切线;

(2)若DB平分∠ADC,AB=a, ∶DE=4∶1,写出求DE长的思路.

 

查看答案

阅读下列材料:

“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.共享单车的出现让更多的用户有了更好的代步选择.自行车也代替了一部分公共交通甚至打车的出行.

Quest Mobile监测的M型与O型单车从2016年10月——2017年1月的月度用户使用情况如下表所示:

根据以上材料解答下列问题:

(1)仔细阅读上表,将O型单车总用户数用折线图表示出来,并在图中标明相应数据;

(2)根据图表所提提供的数据,选择你所感兴趣的方面,写出一条你发现的结论.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.