二次函数,其中
.
(1)求该二次函数的对称轴方程;
(2)过动点C(0, )作直线
⊥y轴.
① 当直线与抛物线只有一个公共点时, 求
与
的函数关系;
② 若抛物线与x轴有两个交点,将抛物线在轴下方的部分沿
轴翻折,图象的其余部分保持不变,得到一个新的图象. 当
=7时,直线
与新的图象恰好有三个公共点,求此时
的值;
(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求的取值范围.
在课外活动中,我们要研究一种凹四边形——燕尾四边形的性质.
定义1:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形(如图1).
(1)根据凹四边形的定义,下列四边形是凹四边形的是(填写序号) ;
① ② ③
定义2:两组邻边分别相等的凹四边形叫做燕尾四边形(如图2).
特别地,有三边相等的凹四边形不属于燕尾四边形.
小洁根据学习平行四边形、菱形、矩形、正方形的经验,对燕尾四边形的性质进行了探究.
下面是小洁的探究过程,请补充完整:
(2)通过观察、测量、折叠等操作活动,写出两条对燕尾四边形性质的猜想,并选取其中的一条猜想加以证明;
(3)如图2,在燕尾四边形ABCD中,AB=AD=6,BC=DC=4,∠BCD=120°,求燕尾四边形ABCD的面积(直接写出结果).
如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB, DF.
(1)求证:DF是⊙O的切线;
(2)若DB平分∠ADC,AB=a, ∶DE=4∶1,写出求DE长的思路.
阅读下列材料:
“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.共享单车的出现让更多的用户有了更好的代步选择.自行车也代替了一部分公共交通甚至打车的出行.
Quest Mobile监测的M型与O型单车从2016年10月——2017年1月的月度用户使用情况如下表所示:
根据以上材料解答下列问题:
(1)仔细阅读上表,将O型单车总用户数用折线图表示出来,并在图中标明相应数据;
(2)根据图表所提提供的数据,选择你所感兴趣的方面,写出一条你发现的结论.
如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.
(1)求证:BF=CD;
(2)连接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四边形ABCD的周长.
列方程或方程组解应用题:
在某场CBA比赛中,某位运动员的技术统计如下表所示:
注:(1)表中出手投篮次数和投中次数均不包括罚球;
(2)总得分=两分球得分+三分球得分+罚球得分.
根据以上信息,求本场比赛中该运动员投中两分球和三分球各几个.