英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯的理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )
A. B.
C.
D.
下列图形中,是中心对称图形但不是轴对称图形的是( )
A. B.
C.
D.
的倒数是( )
A.8 B. C.
D.
如图,已知直线y=kx+b与x轴交于A(8,0),与y轴交于B(0,6),点P是x轴正半轴上的一动点,过点P作PC⊥x轴,交直线AB于点C,以OA,AC为边构造□OACD,设点P的横坐标为m.
(1)求直线AB的函数表达式;
(2)若四边形OACD恰是菱形,请求出m的值;
(3)在(2)的条件下,y轴的上是否存在点Q,连结CQ,使得∠OQC+∠ODC=180°.若存在,直接写出所有符合条件的点Q的坐标,若不存在,则说明理由.
如图,已知△ABC,CO⊥AB于O,且CO=8,AB=22,sinA=,点D为AC的中点,点E为射线OC上任意一点,连结DE,以DE为边在DE的右侧按顺时针方向作正方形DEFG,设OE=x.
(1)求AD的长;
(2)记正方形DEFG的面积为y,① 求y关于x的函数关系式;② 当DF∥AB时,求y的值;
(3)是否存在x的值,使正方形的顶点F或G落在△ABC的边上?若存在,求出所有满足条件的x的值;若不存在,说明理由。
如图1,抛物线y=ax2﹣10ax+c经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,OA= 且AC=BC.
(1)求抛物线的解析式;
(2)如图2,将△AOC沿x轴对折得到△AOC1,再将△AOC1绕平面内某点旋转180°后得△A1O1C2(A,O,C1分别与点A1,O1,C2对应)使点A1,C2在抛物线上,求A1,C2的坐标.
(3)如图3,若Q为直线AB上一点,直接写出|QC﹣QD|的取值范围.