满分5 > 初中数学试题【答案带解析】

设点Q到图形W上每一个点的距离的最小值称为点Q到图形W的距离.例如正方形ABCD...

设点Q到图形W上每一个点的距离的最小值称为点Q到图形W的距离.例如正方形ABCD满足A(1,0),B(2,0),C(2,1),D(1,1),那么点O(0,0)到正方形ABCD的距离为1.

(1)如果⊙P是以(3,4)为圆心,1为半径的圆,那么点O(0,0)到⊙P的距离为         

(2)求点到直线的距离;

(3)如果点到直线的距离为3,求a的值.

 

(1)4 (2)(3) 【解析】(1)根据勾股定理可得点O(0,0)到⊙P的距离; (2)过点M作MH⊥l,垂足为点H,通过证明△EOF∽△MHE,由相似三角形的性质可得,从而得到点M到直线y=2x+1的距离; (3)两种情况:N在F点的上边;N在F点的下边;进行讨论. 利用相似即可得到a的值. 【解析】 (1)OP==5, 点O(0,0)到⊙P的距离为5﹣1=4;...
复制答案
考点分析:
考点1:一次函数
函数的定义:
一般地,在一个变化过程中,如果有两个自变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
对函数概念的理解,主要抓住以下三点:
①有两个变量;
②一个变量的每一个数值随着另一个变量的数值的变化而变化;
③对于自变量每一个确定的值,函数有且只有一个值与之对应。
例如:y=±x,当x=1时,y有两个对应值,所以y=±x不是函数关系。对于不同的自变量x的取值,y的值可以相同,例如,函数:y=|x|,当x=±1时,y的对应值都是1。
理解函数的概念应扣住下面三点:
(1)函数的概念由三句话组成:“两个变量”,“x的每一个值”,“y有惟一确定的值”;
(2)判断两个变量是否有函数关系不仅看它们之间是否有关系式存在,更重要地是看对于x的每一个确定的值。y是否有惟一确定的值和它对应;(3)函数不是数,它是指某一变化过程中两个变量之间的关系。
函数的表示方法:
(1)解析法:两个变量之间的关系有时可以用含有这两个变量及数学运算符号的等式来表示,这种表示方法叫做解析法.
(2)列表法:把自变量x的一系列值和函数y的对应值列成一个表格来表示函数关系,这种表示方法叫做列表法.
(3)图象法:用图象表示函数关系的方法叫做图象法.
函数的判定:
①判断两个变量是否有函数关系,不仅看他们之间是否有关系式存在,更重要的是看对于x的每个确定的值,y是否有唯一确定的值和他对应。
②函数不是数,他是指某一变化过程中两个变量之间的关系。
考点2:图形的相似
形状相同,大小不同的两个图形相似
相关试题推荐

如图,AB是O的直径,CD与O相切于点C,与AB的延长线交于点D,DEAD且与AC的延长线交于点E.

(1)求证:DC=DE;

(2)若tanCAB=,AB=3,求BD的长.

 

查看答案

如图,点E正方形ABCD外一点,点F是线段AE上一点,EBF是等腰直角三角形,其中EBF=90°,连接CE、CF.

(1)求证:△ABF≌△CBE;

(2)判断△CEF的形状,并说明理由.

 

查看答案

为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.

(1)求足球和篮球的单价各是多少元?   

(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?

 

查看答案

将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.

(1)这部分男生有多少人?其中成绩合格的有多少人?

(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?

(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.

 

查看答案

如图,小俊在A处利用高为1.5米的测角仪AB测得楼EF顶部E的仰角为30°,然后前进12米到达C处,又测得楼顶E的仰角为60°,求楼EF的高度.(结果保留根号)

 

查看答案
试题属性
Copyright @ 2008-2013 满分5 学习网 ManFen5.COM. All Rights Reserved.答案无忧