如图,四边形ABCD为矩形,AC为对角线,AB=6,BC=8,点M是AD的中点,P、Q两点同时从点M出发,点P沿射线MA向右运动;点Q沿线段MD先向左运动至点D后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度均为每秒1个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与△ABC重叠部分的面积为S.
(1)当点R在线段AC上时,求出t的值.
(2)求出S与t之间的函数关系式,并直接写出取值范围.(求函数关系式时,只须写出重叠部分为三角形时的详细过程,其余情况直接写出函数关系式.)
(3)在点P、点Q运动的同时,有一点E以每秒1个单位的速度从C向B运动,当t为何值时,△LRE是等腰三角形.请直接写出t的值或取值范围.
阅读发现:(1)如图①,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD,AE.易证:△BCD≌△BAE.(不需要证明)
提出问题:(2)在(1)的条件下,当BD∥AE时,延长CD交AE于点F,如图②,求AF的长.
解决问题:(3)如图③,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,连结CD,AE.当∠BAE=45°时,点E到AB的距离EF的长为2,求线段CD的长为 .
某工厂甲、乙两个车间同时开始生产某种产品,产品总任务量为m件,开始甲、乙两个车间工作效率相同.乙车间在生产一段时间后,停止生产,更换新设备,之后工作效率提高.甲车间始终按原工作效率生产.甲、乙两车间生产的产品总件数y与甲的生产时间x(时)的函数图象如图所示.
(1)甲车间每小时生产产品 件,a= .
(2)求乙车间更换新设备之后y与x之间的函数关系式,并求m的值.
(3)若乙车间在开始更换新设备时,增加两名工作人员,这样可便更换设备时间减少0.5小时,并且更换后工作效率提高到原来的2倍,那么两个车间完成原任务量需几小时?
今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,某校学生会为了调查学生对雾霾天气知识的了解程度,随机抽取了该校的n名学生做了一次跟踪调查,将调查结果分为四个等级:(A)非常了解.(B)比较了解.(C)基本了解.(D)不了解,并将调查结果绘制成如下两幅不完整统计图.
根据统计图提供的信息,解答下列问题:
(1)求n的值;
(2)在调查的n名学生中,对雾霾天气知识不了解的学生有 人,并将条形统计图补充完整.
(3)估计该校1500名学生中,对雾霾天气知识比较了解的学生人数.
如图,甲、乙两栋大楼相距78米,一测量人员从甲楼AC的顶部看乙楼BD的顶部其仰角为27°.如果甲楼的高为34米,求乙楼的高度是多少米?(结果精确到0.1米)
【参考数据:sin27°=0.45,cos27°=0.89,tan27°=0.51】
如图,在△AEF中,点D,B分别在边AF和AF的延长线上,已知FB=AD,BC∥AE,且BC=AE,连结CD,CF,DE.
求证:四边形CDEF是平行四边形.