如图,在平面直角坐标系xOy中,点m在x轴的正半轴上,⊙M交x轴于A、B两点,交y轴于C,D两点,且C为弧AE的中点,AE交y轴于G点,若点A的坐标为(﹣2,0),AE=8,
(1)求证:AE=CD;
(2)求点C坐标和⊙M直径AB的长;
(3)求OG的长.
如图,平面直角坐标系中,矩形OABC的一边OA在x轴上,点B的坐标为(4,3),双曲线(x>0)交线段BC于点P(不与端点B、C重合),交线段AB于点Q
(1)若P为边BC的中点,求双曲线的函数表达式及点Q的坐标;
(2)求k的取值范围;
(3)连接PQ,AC,判断:PQ∥AC是否总成立?并说明理由.
如图,在以点O为原点的直角坐标系中,一次函数y=﹣x+1的图象与x轴交于A,与y轴交于点B,求:
(1)△AOB面积= ;
(2)△AOB内切圆半径= ;
(3)点C在第二象限内且为直线AB上一点,OC=AB,反比例函数
的图象经过点C,求k的值.
某校举行春季运动会,需要在初三年级选取1或2名同学作为志愿者,初三(5)班的小熊、小乐和初三(6)班的小矛、小管4名同学报名参加.
(1)若从这4名同学中随机选取1名志愿者,则被选中的这名同学恰好是初三(5)班同学的概率是 ;
(2)若从这4名同学中随机选取2名志愿者,请用列举法(画树状图或列表)求这2名同学恰好都是初三(6)班同学的概率.
如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,DE⊥AB于点D,交AC于点E.
(1)若BC=3,AC=4,求CD的长;
(2)求证:∠1=∠2.
计算
(1)
(2)(2a+3b)(3a﹣2b)