满分5 > 初中数学试题 >

如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+...

如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.

(1)求a,k的值;

(2)抛物线的对称轴上有一点Q,使ABQ是以AB为底边的等腰三角形,求Q点的坐标;

(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.

 

 

(1)1,﹣1(2)(2,2)(3)   【解析】 试题分析:(1)先求出直线y=﹣3x+3与x轴交点A,与y轴交点B的坐标,再将A、B两点坐标代入y=a(x﹣2)2+k,得到关于a,k的二元一次方程组,解方程组即可求解; (2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF与Rt△BQE中,用勾股定理分别表示出AQ2=AF2+QF2=1+m2,BQ2=BE2+EQ2=4+(3﹣m)2,由AQ=BQ,得到方程1+m2=4+(3﹣m)2,解方程求出m=2,即可求得Q点的坐标; (3)当点N在对称轴上时,由NC与AC不垂直,得出AC为正方形的对角线,根据抛物线的对称性及正方形的性质,得到M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,此时,MF=NF=AF=CF=1,且AC⊥MN,则四边形AMCN为正方形,在Rt△AFN中根据勾股定理即可求出正方形的边长. 试题解析:(1)∵直线y=﹣3x+3与x轴、y轴分别交于点A、B, ∴A(1,0),B(0,3). 又∵抛物线y=a(x﹣2)2+k经过点A(1,0),B(0,3), ∴,解得, 故a,k的值分别为1,﹣1; (2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E. 在Rt△AQF中,AQ2=AF2+QF2=1+m2, 在Rt△BQE中,BQ2=BE2+EQ2=4+(3﹣m)2, ∵AQ=BQ, ∴1+m2=4+(3﹣m)2, ∴m=2, ∴Q点的坐标为(2,2); (3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线. 又∵对称轴x=2是AC的中垂线, ∴M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,其坐标为(2,1). 此时,MF=NF=AF=CF=1,且AC⊥MN, ∴四边形AMCN为正方形. 在Rt△AFN中,AN==,即正方形的边长为. 考点:1、二元一次方程组的解法,2、等腰三角形的性质,3、勾股定理,4、二次函数的性质,5、正方形的判定与性质  
复制答案
考点分析:
相关试题推荐

如图,正方形ABCD的边长为1,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQAB的延长线于点Q.

(1)求线段PQ的长;

(2)问:点P在何处时,PFD∽△BFP,并说明理由.

 

 

查看答案

目前节能灯在城市已基本普及,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如表:

 

进价(元/只)

售价(元/只)

甲型

25

30

乙型

45

60

(1)如何进货,进货款恰好为46000元?

(2)如何进货,商场销售完节能灯时获利恰好是进货价的30%,此时利润为多少元?

 

查看答案

如图,以ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D,E.且

(1)求证:AB=AC;

(2)若AB=10,BC=12,求cosABD的值.

 

 

查看答案

如图,A,B两地之间有一座山,汽车原来从A地到B地须经C地沿折线A﹣C﹣B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10km,A=30°,B=45°,则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果精确到0.1km)(参考数据:1.41,1.73)

 

 

查看答案

某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.

(1)如果随机抽取1名同学单独展示,那么女生展示的概率为     

(2)如果随机抽取2名同学共同展示,求同为男生的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.