满分5 > 初中数学试题 >

如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4). (1)求抛物...

如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4).

(1)求抛物线解析式及顶点坐标;

(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;

(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形.

 

(1)y=-x2+x-4,顶点坐标(,);(2)S=-2x2+14x-12;(3)不能. 【解析】 试题分析:(1)根据对称轴,以及A、B坐标可求得解析式,进而可求顶点坐标;(2)根据平行四边形的面积公式,可得函数解析式;(3)根据函数值,可得E点坐标,根据菱形的判定,可得答案. 试题解析:(1)设抛物线的解析式为y=ax2+bx+c,将A、B点的坐标代入函数解析式,得,解得,抛物线的解析式为y=- x2+x-4=﹣(x﹣)2+,∴解析式为y=-x2+x-4,顶点坐标(,);(2)E点坐标为(x,-x2+x-4),S=2×OA•yE=3(-x2+x-4),即S=﹣2x2+14x﹣12; (3)平行四边形OEAF的面积为24时,平行四边形OEAF不能为菱形,理由如下:当平行四边形OEAF的面积为24时,即﹣2x2+14x﹣12=24,x2﹣7x+18=0,∴△=b2﹣4ac=(﹣7)2﹣4×18=﹣23<0,方程无解, E点不存在,平行四边形OEAF的面积为24时,平行四边形OEAF不能为菱形. 考点:1二次函数综合题;2菱形.  
复制答案
考点分析:
相关试题推荐

如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.

(1)求证:直线BF是⊙O的切线;

(2)若AB=5,sin∠CBF=,求BC和BF的长.

 

查看答案

如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).

(1)求反比例函数的解析式;

(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.

 

查看答案

周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?

 

查看答案

如图,四边形ABCD中,ADBC,AEADBD于点ECFBCBD于点F,且AE=CF.

求证:四边形ABCD是平行四边形.

 

查看答案

某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.

请根据统计图表提供的信息,解答下列问题:

(1)参加调查的人数共有      人;在扇形图中,m=      ;将条形图补充完整;

(2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人?

(3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.