满分5 > 初中数学试题 >

已知抛物线y=ax2+bx+c经过A(-4,3)、B(2,0)两点,当x=5和x...

已知抛物线y=ax2+bx+c经过A(-4,3)、B(2,0)两点,当x=5和x=-5时,这条抛物线上对应点的纵坐标相等.经过点C(0,-2)的直线l与x轴平行,O为坐标原点.

(1)求直线AB和这条抛物线的解析式;

(2)以A为圆心,AO为半径的圆记为⊙A,判断直线l与⊙A的位置关系,并说明理由;

(3)设直线AB上的点D的横坐标为-1,P(m,n)是抛物线y=ax2+bx+c上的动点,当△PDO的周长最小时,求四边形CODP的面积.

 

(1)y=x2-1;(2)直线l与⊙A相切,理由见解析;(3). 【解析】 试题分析:此题主要考查了二次函数解析式的确定、直线与圆的位置关系、图形面积的求法等知识,还涉及到解析几何中抛物线的相关知识,能力要求极高,难度很大. (1)用待定系数法即可求出直线AB的解析式;根据“当x=3和x=-3时,这条抛物线上对应点的纵坐标相等”可知:抛物线的对称轴为y轴,然后用待定系数法即可求出抛物线的解析式; (2)根据A点坐标可求出半径OA的长,然后判断A到直线l的距离与半径OA的大小关系即可; (3)根据直线AB的解析式可求出D点的坐标,即可得到OD的长,由于OD的长为定值,若△POD的周长最小,那么PD+OP的长最小,可过P作y轴的平行线,交直线l于M;首先证PO=PM,此时PD+OP=PD+PM,而PD+PM≥DM,因此PD+PM最小时. 试题解析:(1)设直线AB的解析式为y=kx+b,则有: , 解得; ∴直线AB的解析式为y=-x+1; 由题意知:抛物线的对称轴为y轴,则抛物线经过(-4,3),(2,0),(-2,0)三点; 设抛物线的解析式为:y=a(x-2)(x+2), 则有:3=a(-4-2)(-4+2),a=; ∴抛物线的解析式为:y=x2-1; (2)易知:A(-4,3),则OA==5; 而A到直线l的距离为:3-(-2)=5; 所以⊙A的半径等于圆心A到直线l的距离, 即直线l与⊙A相切; (3)过D点作DM∥y轴交直线于点M交抛物线于点P, 则P(m,n),M(m,-2); ∴PO2=m2+n2,PM2=(n+2)2; ∵n=m2-1,即m2=4n+4; ∴PO2=n2+4n+4=(n+2)2, 即PO2=PM2,PO=PM; 易知D(-1,),则OD的长为定值; 若△PDO的周长最小,则PO+PD的值最小; ∵PO+PD=PD+PM≥DM, ∴PD+PO的最小值为DM, 即当D、P、M三点共线时PD+PM=PO+PD=DM; 此时点P的横坐标为-1,代入抛物线的解析式可得y=-1=-, 即P(-1,-); ∴S四边形CPDO=(CO+PD)×|xD|=×(2++)×1=. 考点:二次函数综合题.  
复制答案
考点分析:
相关试题推荐

阅读理【解析】
对于任意正实数a,b,

∴a+b≥2,当且仅当a=b时,等号成立.

结论:在a+b≥2(a,b均为正实数)中,若ab为定值p,则

当且仅当a=b,a+b有最小值

根据上述内容,回答下列问题:

(1)若x0,只有当x=         时,有最小值         

(2)探索应用:如图,已知A(-2,0),B(0,-3),点P为双曲线上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.

(3)已知x>0,则自变量x为何值时,函数取到最大值,最大值为多少?

 

查看答案

如图在边长为1个单位长度的小正方形组成的网格中ABC的顶点A、B、C在小正方形的顶点上.将△ABC向下平移4个单位、再向右平移3个单位得A1B1C1,然后将A1B1C1绕点A1顺时针旋转90°得到A1B2C2

(1)在网格中画出A1B1C1A1B2C2

(2)计算点C在变换到点C2的过程中经过的路线长;

(3)计算线段B1C1在变换到线段B2C2的过程中扫过的图形的面积.

 

查看答案

古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A、B两工程队先后接力完成.A工作队每天整治12米,B工程队每天整治8米,共用时20天.

(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:

根据甲、乙两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:

甲:x表示________________,y表示_______________;

乙:x表示________________,y表示_______________.

(2)求A、B两工程队分别整治河道多少米.(写出完整的解答过程)

 

查看答案

将两张宽度相等的矩形纸片叠放在一起得到如图所示的四边形ABCD.

(1)求证:四边形ABCD是菱形;

(2)如果两张矩形纸片的长都是8,宽都是2.那么△DCB的面积是否存在最大值或最小值?如果存在,请求出来;如果不存在,请简要说明理由.

 

查看答案

店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.

(1)若他去买一瓶饮料,则他买到奶汁的概率是       

(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种相同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.