一天中的气温变化各不相同,为了直观表示出一天的气温变化情况,气象员通常把它制成( )
A.扇形统计图 B.折线统计图 C.条形统计图 D.复式统计图
据市旅游局统计,今年“十•一”长假期间,我市旅游市场走势良好,假期旅游总收入达到1.5亿元,用科学记数法可以表示为( )
A.1.5×106 B.1.5×107 C.1.5×108 D.1.5×109
的绝对值是( )
A. B.
C.2 D.﹣2
如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线和直线BC的解析式;
(2)如图2,点P为第一象限抛物线上一点,是否存在使△PBC面积最大的点P?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与直线BC相交于点F,M为直线BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.
如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.
(1)如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;
(2)如图2,当点E不是线段AC的中点时,求证:BE=EF;
(3)如图3,当点E是线段AC延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.
对x,y定义一种新运算T,规定:(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:
.
(1)已知T(1,﹣1)=﹣2,T(4,2)=1.
①求a、b的值;
②若关于m的方程T(1﹣m,﹣m2)=﹣2有实数解,求实数m的值;
(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a、b应满足怎样的关系式?