满分5 > 初中数学试题 >

某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价25元...

某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价25元/件时,每天的销售量是250件;销售单价每上涨1元,每天的销售量就减少10件.

(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式.

(2)求销售单价为多少元时,该文具每天的销售利润最大?

(3)商场的营销部结合上述情况,提出了A,B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.

 

(1)w=-10x2+700x-10000; 当单价为35元时,该文具每天的利润最大; (3)A方案利润更高. 【解析】 试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可; (2)根据(1)式列出的函数关系式,运用配方法求最大值; (3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较. 试题解析:(1)w=(x-20)[250-10(x-25)]=-10(x-20)(x-50)=-10x2+700x-10000. (2)∵w=-10x2+700x-10000 =-10(x-35)2+2250, ∴当x=35时,w取到最大值2250, 即销售单价为35元时,每天销售利润最大,最大利润为2250元. (3)∵w=-10(x-35)2+2250, ∴函数图象是以x=35为对称轴且开口向下的抛物线. ∴对于方案A,需20
复制答案
考点分析:
相关试题推荐

如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.

满分5 manfen5.com

1)求∠ABC的度数;

(2)求证:AE是⊙O的切线;

(3)当BC=4时,求劣弧AC的长.

 

查看答案

如图,已知△OAB的顶点A(﹣6,0),B(0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC.

满分5 manfen5.com

(1)写出C,D两点的坐标;

(2)求过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标;

(3)证明AB⊥BE

 

查看答案

一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.

满分5 manfen5.com

(1)用树状图或列表法求出小颖参加比赛的概率;

(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.

 

查看答案

如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).

满分5 manfen5.com

(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;

(2)平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2.

(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.

 

查看答案

如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,☉P与x轴交于O,A两点,点A的坐标为(6,0),☉P的半径为满分5 manfen5.com,则点P的坐标为    .

满分5 manfen5.com

 

 

查看答案
试题属性
  • 题型:解答题
  • 难度:困难

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.