如图,在△ABC中,∠C=90°,∠CAD=∠BAD,DE⊥AB于E,点F在边AC上,连接DF.

(1)求证:AC=AE;
(2)若AC=8,AB=10,且△ABC的面积等于24,求DE的长;
(3)若CF=BE,直接写出线段AB,AF,EB的数量关系: .
观察下列等式:
1×3+1=22
3×5+1=42
5×7+1=62
.......................................
请你按照上述三个等式的规律写出第④个、第⑤个等式;
请猜想,第n个等式(n为正整数)应表示为 ;
证明你猜想的结论.
如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.

(1)若AB=7,AC=5,求△ADE的周长;
(2)若∠ABC=∠ACB,AC=10,直接写出图中所有的等腰三角形并求△ADE的周长.
如图,AE,AD分别是△ABC的高和角平分线,且∠B=40°,∠C=60°,求∠BAD和∠DAE的度数.

先化简,再求值:
,在0,2,3三个数中选一个使原式子有意义的数代入求值.
如图,△ABC的三个顶点的坐标分别是A(-2,3),B(-3,1),C(1,-2).

(1)直接写出点A、B、C关于y轴对称的点A’、B’、C’坐标: A’( , )、B’( , )、C’( , );
(2)在x轴上求作一点P,使PA+PB最短.(保留痕迹)
