(2014•湖州)如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=
AB中,一定正确的是( )

A.①②③ B.①②④ C.①③④ D.②③④
(2014•滨州)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )

A.同位角相等,两直线平行 B.内错角相等,两直线平行
C.两直线平行,同位角相等 D.两直线平行,内错角相等
(2014•崇左)如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是( )
作法:
①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;
②分别以D,E为圆心,大于
DE的长为半径画弧,两弧在∠AOB内交于一点C;
③画射线OC,射线OC就是∠AOB的角平分线.

A.ASA B.SAS C.SSS D.AAS
(2014•安顺)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是( )

A.(SAS) B.(SSS) C.(ASA) D.(AAS)
(2015•河北一模)现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,AB=b,小惠和小雷的作法分别如下.
小惠:①以点O为圆心、线段a为半径画弧,交射线ON于点A;②以点A为圆心、线段b长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.
小雷:①以点O为圆心、线段a为半径画弧,交射线ON于点A;②以点O为圆心、线段b长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.
则下列说法中正确的是( )
A.小惠的作法正确,小雷的作法错误
B.小雷的作法正确,小惠的作法错误
C.两人的作法都正确
D.两人的作法都错误
(2014•东营)下列命题中是真命题的是( )
A.如果a2=b2,那么a=b
B.对角线互相垂直的四边形是菱形
C.旋转前后的两个图形,对应点所连线段相等
D.线段垂直平分线上的点与这条线段两个端点的距离相等
