(14分)如图,△ABC中,点D是BC中点,连接AD并延长到点E,连接BE。
(1)若要使△ACD≌△EBD,应添上条件:__________
(2)证明上题:
(3)在△ABC中,若AB=5.AC=3,可以求得BC边上的中线AD的取值范围AD<4.请看解题过程:
由△ACD≌△EBD得:AD=ED,BE=AC=3,因此AE<AB+BE,即AE<8,而AD=AE,
则AD<4,请参考上述解题方法,可求得AD>m,则m的值为_______________.
(4)证明:直角三角形斜边上的中线等于斜边的一半。(提示:画出图形,写出已知,求证,并加以证明)
(10分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.
(10分)某中学八年级(5)班的学生到野外进行数学活动,为了测量一池塘两端A、B之间的距离,同学们设计了如下两种方案:
(Ⅰ)如图3(1),先在平地上取一个可以直接到达A、B的点C,再连接AC、BC,并分别延长AC至D,BC至E,使,
,最后量出DE的距离就是AB的长。
(Ⅱ)如图3(2),过点B作AB的垂线BF,在BF上取C、D两点,使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离。
问:(1)方案(Ⅰ)是否可行?__________ _;
(2)方案(Ⅱ)是否可行?___________;
(3)小明说在方案(Ⅱ)中,并不一定须要,DE⊥BF,只需___________就可以了,请把小明所说的条件补上,并写出证明过程。
证明:
(8分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.
(6分)请分别画出下图中各图的所有对称轴.
(1)正方形 (2)正三角形 (3)相交的两个圆
如图是瑞典人科赫(Koch)在1906年构造的能够描述雪花形状的科赫雪花图案.图形的作法是,从一个正三角形开始,把每条边分成三等份,然后以各边的中间长度为底边.分别向外作正三角形,再把“底边”线段抹掉.反复进行这一过程,就会得到一个“雪花”样子的曲线.这是一个极有特色的图形:在图形不断变换的过程中,它的周长趋于无穷大,而其面积却趋于定值.如果假定原正三角形边长为,则可算出下图每步变换后科赫雪花的周长:
=3
,
= ,
= ,…,则
= .