(本小题满分10分)某经销店为某工厂代销一种建筑材料.当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
(本小题满分10分)如图,一次函数y=kx+n的图象与x轴和y轴分别交于点A(6,0)和B(0,),线段AB的垂直平分线交x轴于点C,交AB于点D.
(1)试确定这个一次函数关系式;
(2)求点C的坐标以及过A、B、C三点的抛物线的函数表达式.
(本小题满分8分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“湘”、“湖”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“湘”的概率为多少?
(2)甲从中任取一球,不放回,再从中任取一球,请用画树状图的方法,求出甲取出的两个球上的汉字恰能组成“美丽”或“湘湖”的概率P1;
(3)乙从中任取一球,记下汉字后再放回袋中,再从中任取一球,记乙取出的两个球上的汉字恰能组成“美丽”或“湘湖”的概率为P2,请比较P1,P2的大小关系。
(本小题满分8分)已知二次函数的图象经过点( -1,-8 ),顶点为( 2, 1 ).
(1)求这个二次函数的表达式;
(2)分别求图象与x轴、y轴的交点坐标.
(本小题满分6分)分别根据配方法和顶点坐标公式确定下列二次函数的顶点坐标。
(配方法)
② (公式法)
将抛物线y1=x2向右平移2个单位,得到抛物线y2的图象.P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y =x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t= .