(本小题满分10分)在一个不透明的口袋里装有分别标有数字-3、-1、0、2的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均匀.
(1)从中任取一球,求抽取的数字为正数的概率;
(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程有实数根的概率;
(3)从中任取一球,将球上的数字作为点的横坐标记为x(不放回);在任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.
(本小题满分10分)某公司研制出一种新颖的家用小电器,每件的生产成本为18元,经市场调研表明,按定价40元出售,每日可销售20件.为了增加销量,每降价1元,日销售量可增加2件.问将售价定为多少元时,才能使日利润最大?求最大利润.
(本小题满分8分)已知函数(
是常数).
(1)求证:不论为何值,该函数的图象都经过y轴上的一个定点;
(2)若该函数的图象与x轴只有一个交点,求的值.
(本小题满分8分)已知:如图,在⊙O中,弦AB=CD.求证:AD=BC.
(本小题满分6分)已知抛物线过点C(5,4).
(1)求的值;
(2)求该抛物线顶点的坐标.
如图,已知AB为⊙O的直径,点C为半圆上的三等分点,在直径AB所在的直线上找一点P,连接CP交⊙O于点Q,使PQ=OQ,则∠CPO= .